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Abstract

It is known that some dimeric tandem repeats (DTR) are very abundant in noncoding DNA.
We find that certain DTR length distribution functions in noncoding DNA can be fit by a power
law function. We analyze a simplified model of unequal chromosomal crossing over and find that
it produces a stable power law length distribution function, with the exponent u = 2. Although
the exponent predicted by this model differs from those observed in nature, we argue that the
biophysical process underlying this model provides the major contribution to the DTR length
distribution function. © 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

The genetic information of organisms is stored in DNA which is a sequence of four
different bases: adenine 4, guanine G (purines), cytosin C, and thymine 7 (pyrimidines)
[1]. Each DNA molecule is packaged in a chromosome, which varies in length from
10° base pairs (bp) in yeast to 10* bp in human. Roughly 5% of human DNA is
coding, i.e. is translated into protein by various combinations of three nucleotides.
Although the rest of DNA is noncoding. some regions are known to be involved in
various regulatory processes. The statistical properties of coding DNA are different from
noncoding DNA. For example, simple sequence repeats (SSR) are very abundant in
noncoding DNA, but are rare in coding DNA. SSR can be represented as (X, X>... Xx ),
where X;—; n is one of 4, C, G or T, and / is the number of copies, which can. in
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Fig. 1. Double-logarithmic plot of N?I,(/) tor all noncoding vertebrate sequences in GenBank (release 96.0);
as an example we show the combined results for 44 - TT. Note that the data can be fit by a power law
function, so Eq. (4) holds. We find that the exponent ¢ = 3.9 for fitting range / € [I,44], with confidence
value R = 0.98. The difference of length distribution functions for noncoding DNA and uncorrelated random
sequenee is dramatic; one can observe a DTR of length of 48 dimers in noncoding DNA (with probability,
roughly, p = 1077), while it is 49 orders of magnitude less probable to find such DTR in uncorrelated
random sequence (where all bases have equal concentrations) (p &~ 10738y

some cases, be of the order of 100. SSR are of considerable practical and theoretical
interest due to their high polymorphism [2], i.e. the length of SSR at the same DNA
locus can vary from individual to individual. This property of SSR is used in genetic
fingerprinting.

The expansion of SSR in DNA sequences plays an important role in genome orga-
nization and evolution and is associated with many genetic diseases (e.g. see [3—5]).
It was recently discovered [6,7] that the length distribution of a particular type of
simple repeats, dimeric tandem repeats (DTR), can be fit by a power law function in
noncoding DNA (see Fig. 1). For vertebrate DNA these DTR include the following:
(AA4),, (CC)s, (GA),, (AG),, (GG, (TA),, (AT )y, (TC)s, (CT), and (TT),. The re-
maining of DTR ((AC),, (CA),, (CG )/, (GC),, (TG), and (GT),) behave differently
(for details see [6]). To stress the importance of the observed power law DTR length
distribution functions, one can estimate that in the case of uncorrelated or short-range
correlated random sequence, the length distributions of these DTR would be expo-
nential and long repeats (with />7) would not be observed in present database (see
caption to Fig. 1). The abundance of DTR in noncoding DNA raises a question about
the nontrivial biophysical processes which lead to such distributions in the course of
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the genome evolution. The difference in statistical properties of coding and noncoding
regions might be a consequence of the fact that less errors are allowed in coding DNA
than in noncoding DNA. Even a single mutation in the coding region can lead to the
extinction of organisms. For example, the insertion or deletion of a group of nucleotides
in coding DNA may result in a shift of the reading frame causing misinterpretation of
genetic information.

In this paper we conjecture that the DTR length distribution functions follow a power
law function due to a specific type of mutation resulting from the unequal crossing over
of chromosomes which can occur during cell division (discussed in the next section).
We describe a model, based on unequal crossing over [l], which produces power
law distributions with exponent p = 2. We also discuss the role of other biological
processes in the evolution of repeat length distribution.

2. Model of unequal chromosomal crossing over

The crossing over of two homologous chromosomes (paternal and maternal) during
meiosis is one of the major contributions to the reassortment of genetic information.
During meiosis the paired chromosomes can both break due to the tension resulting
from the mutual attraction of these chromosomes. Further, the broken ends can be
rejoined to the original parental chromosomes or can cross over to join the homologous
parental chromosomes. It is sometimes possible that breakage occurs unequally in the
two chromosomes. In the case that cross over occurs with such unequal breakage, each
parental chromosome changes in length, one becomes longer, while the other becomes
shorter. We base our model on this mechanism of unequal chromosomal crossing over,
which 1s defined as follows:

Model. Consider a segment with a DTR of length / (see Fig. 2). We define un-
equal crossing over to be when a segment of a repeat of length x on chromosome
A (maternal) joins a segment of a repeat of length / — ¥ on chromosome B (pa-
ternal). As a result, we obtain two repeats of length / — x + v (on chromosome
A} and 7 + x — v (on chromosome B), ie. the chromosome lengths change as
follows:

/A_>/I_\E/A(]_'f¥+év) or /B"/.;}E/B(l_*‘f\_f\)v (])
where ¢, = x// and &, = y/¢ range from 0 to 1.

Without loss of generality,” we follow the evolution of chromosome A. Eq. (1) can
be rewritten in terms of one parameter » = 1 — &, + ¢y, which ranges from 0 to 2:
{ — /" ={¢-r. Thus, if 0 < r < 1, the repeat shrinks in length, while if 1 < r < 2,
the repeat grows.

2 Note that in the mathematical sense, chromosomes A and B are equivalent upon the transformation x « y.
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Fig. 2. Crossing over of two homologous chromosomes during the meiosis. Due to unequal crossing over,
the part which contains DTR of maternal chromosome A of length x joins the part which contains the same
type of DTR in the paternal chromoseme B of length / — v. As a result, the length of the chromosome A
changes to 7/ — x + v. Similarly, the corresponding part of maternal chromosome A of length / — v joins the
same type of DTR in the paternal chromosome B of length v. As a result, the length of the chromosome B
changes to 7/ +x - ».

To derive the probability distribution function C(r) of variable » we need to integrate
over all possible configurations of &, and &, to get a particular value of »:

ol 1
Clry = / dé F1(E) / ey [l -0 — 1= &4 &) 2)
JA o

where f and [, are distribution functions of ¢, and <,

After ¢ steps of evolution the length of the repeat is given by /, = /- H:: #i. Such
a “random multiplicative process” in many cases leads in the long time limit (1 — o)
to a stable distribution of repeat length P(/). To avoid extinction of repeats, one can
set the probability of extinction to zero.

I we change variables to z, = In/,, the dynamics of z, becomes a random diffusion
process in semi-infinite space z>0 (due to the fact that />1) with a reflecting wall
at z=0 and an attractive potential. A classical example of such a process is Brown-
lan motion in a potential field, which leads in the continuum limit to an exponential
decrease of the atmosphere’s density. Thus, in this case, the probability distribution
function for the final outcome of our process can be written as

P(z) ~ 757, (3)

where £ is some constant. After transforming back to our original variables, Eq. (3)
can be rewritten in the form of power law with u = & + 1:

P(Ly~ ¢ . (4)
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To derive this result, we write the master equation for the z-variable written in the
continuous limit:

_ oo
dpc(;f) :f P(z — x,1)- C(x)dx — P(z.1). )

— 00
If we assume that P(z,¢) has a time-independent solution in the form of Eq. (3), then
we obtain an additional condition on C(r) in terms of original variable r:

/L Cryr'ldr=1. (6)

0

It can be shown that for any two distributions f; and f» with equal first moments
Egs. (2) and (6) yield two solutions g = 1 and u = 2. The first solution does not
produce a normalizable distribution, so we can disregard it.

3. Discussion

Our model is able to produce power law behavior of DTR length distribution func-
tions with = 2. However, for real DNA sequences u ranges from 2.5 to 4.5 for various
taxonomic classes and various DTR. This difference can be attributed to processes, in
addition to unequal crossover, that take place in nature.

(1) One possible scenario for p>2 can be due to the selective pressure against
fixations of the longer repeats in the population, so that the probability of chromosomal
growth is larger than that of chromosomal shrinkage. Thus, the function C(r) becomes
asymmetric and skewed to the left from the symmetry point r = 1. In this case, the
solution to Eq. (6) yields power law function with exponent y>2. For example, if we
take function C(r), asymmetric relative to the point r = 1:

%, 0 < r<l,
C(r) = %, 1 < r<2, {(7)
0, r<0 or r > 2,

then the solution of the Eq. (6) yields power law function DTR length distribution
function P(/) with the exponent p =~ 3.7. This example shows that with slight asym-
metry of function C(r) one can achieve any exponent i > 2 by varying the skewness
of the function C(»).

(i1) We suspect, however, that the higher observed exponent i comes from point
substitutions of one nucleotide by another, which are more likely to target longer repeats
[8]. Such mutations would destroy long repeats and create more shorter repeats. This
would result in a decrease of values of the DTR length distribution functions at the
tail of distributions and, therefore, an increase of the exponent p.
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4. Conclusion

We find that a simple mathematical description of unequal chromosomal crossing
over is capable of reproducing power law behavior of DTR length distribution func-
tions. We also find that the only restriction one should impose on the probability
distribution functions of “target variables™ ¢, and ¢, is the equality of their mathe-
matical expectations. Taking into account other evolutionary processes, such as point
substitutions or slipped strand misspairing, we believe it might be possible to reproduce
the exponents observed in nature. This work is currently under investigation.

References

[1] B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, .D. Watson, Molccular Biology of the Cell, Garland
Publishing, New York, 1994,

[2] A.M. Bowcock, A. Ruiz-Linares, J. Tomfohrde, E. Minch. J.R. Kidd, L.L. Cavalli-Sforza, Nature 368
(1994) 455.

[3] Huntington's Disease Collaborative Research Group, Cell 72 (1993) 971.

(4] E. Kremer, M. Pritchard, M. Lynch, S. Yu, K. Holman, E. Baker, S.T. Warren, D. Schlessinger, G.R.
Sutherland, R.I. Richards, Science 252 (1991) 1711,

[5] Y. lonov, M.A. Peinado, S. Malkhosyan, D. Shibata, M. Perucho, Nature 363 (1993) 558.

{6] N.V. Dokholyan, S.V. Buldyrev, S. Havlin, H.E. Stanley, I. Mol. Evol. (1997}, submitted.

[7] N.V. Dokholyan, S.V. Buldyrev, S. Havlin, H.E. Stanley, Phys. Rev. Lett. (1997), in press.

8] G.I. Bell., Comput. Chem. 20 {1996) 41.



