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Distribution of Base Pair Repeats in Coding and Noncoding DNA Sequences
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We analyze the histograms for the lengths of the 16 possible distinct repeats of identical dimers,
known as dimeric tandem repeats, in DNA sequences. For coding regions, the probability of finding
a repetitive sequence of , copies of a particular dimer decreases exponentially as , increases. For
the noncoding regions, the distribution functions for most of the 16 dimers have long tails and can
be approximated by power-law functions, while for coding DNA, they can be well fit by a first-
order Markov process. We propose a model, based on known biophysical processes, which leads to
the observed probability distribution functions for noncoding DNA. We argue that this difference
in the shape of the distribution functions between coding and noncoding DNA arises from the
fact that noncoding DNA is more tolerant to evolutionary mutational alterations than coding DNA.
[S0031-9007(97)04907-7]

PACS numbers: 87.10.+e

Interest in the growth and evolution of simple sequence
repeats in DNA sequences is increasing due to their
important role in genetic diseases, genome organization,
and evolutionary processes [1,2]. One intriguing property
of simple repeats is that they constitute a large fraction
of noncoding DNA, but are relatively rare in protein
coding sequences [3]. Another reason for the interest
in simple sequence repeats is their possible relation to
the long-range correlations found in DNA sequences:
recent studies [4,5] support the claim [6,7] that the range
of correlations in nucleotide composition is longer in
noncoding regions than in coding ones.

Here we study the length distribution functions of these
simple repeats, and we propose a model of DNA evolution
which leads to the observed distributions. Specifically,
we consider the distribution of repeats of identical dimers,
called dimeric tandem repeats (DTR). DTR are so
abundant in noncoding DNA that their presence can be
observed by global statistical methods such as the power
spectrum [8], which reveals a peak at frequency 1y2 for
noncoding DNA (corresponding to repetition of dimers)
and the absence of this peak in coding DNA (see, e.g.,
Fig. 1 of [4]). This difference in the abundance of DTR
in coding DNA and noncoding DNA suggests that these
repeats may play a role in the organization and evolution
of DNA.

We analyze all vertebrate, invertebrate, mammal, pri-
mate, and plant taxonomic partitions of the GenBank re-
lease 96.0 and construct the length histograms Nxys,d of
the 16 possible DTR, where , is the number of identi-
cal copies of a particular dinucleotide xy, and x, y are
the letters A, C, G, and T of the DNA “alphabet”—e.g.,
AT AT AT ­ sAT d,­3, CCCC ­ sCCd,­2.

We find two principal results:
(i) Coding.—All 16 DTR in coding DNA have dis-

tribution functions not significantly different from those

of an uncorrelated or short-range correlated random se-
quence [Fig. 1(a)]. Thus

Nxys,d , exps2k0
xy,d , (1)

where k0
xy is the logarithm of the concentration of dimer

xy. The exponential distributions of DTR in protein
coding sequences are consistent with the hypothesis of
strong evolutionary pressure against DTR expansion in
active proteins [9].

(ii) Noncoding.—The length distributions in noncoding
DNA for most DTR decay much more slowly than
exponentially [Figs. 1(b) and 2]. With the exception
of three cases—CC, CG, and GG —the DTR length
distribution functions can be better approximated by
power-law functions

Nxys,d , ,
2m, (2)

where m ranges from 2 to 4.5 [10] depending on the
taxonomic class and type of DTR. According to the
theory of Lévy walks, in the case 2 , m , 3, the power-
law distribution of simple repeats leads to the existence
of long-range power-law correlations [11]. We note that
the abundance of long dimeric repeats in noncoding DNA
contributes to the presence of long-range correlations,
while the lack of long dimeric repeats in coding DNA
is related to the absence of long-range correlations [12].
However, long-range correlations in noncoding DNA are
not only due to exact repetitions of dimers; other types
of repeats occur, including trimer repeats, nonperfect
simple repeats (simple repeats with a few substitutions),
transposable elements [13], and long runs of purines and
pyrimidines [14].

Next we discuss these two results in detail.
(i) Coding.—The exponential distribution of DTR

in coding DNA reflects the fact that DTR represent
uncorrelated or short-range correlated sequences which
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FIG. 1. The combined results for six groups of DTR: AA, TT (AA or TT) (o), TA, AT snd, CA, AC, TG, GT sjd, CC, GG (d),
GA, AG, TC, CT sed, and GC, CG shd for the complete yeast genome (total length 6 325 440 base pairs (bp); total length of the
coding DNA 3 549 593 bp). We use this classification because A is complementary to T , and C is complementary to G; also, we
average over two possible directions of reading of DNA sequences. For clarity, we separate plots for these six groups by shifting
them by log10s100d ­ 2. (a) Semilogarithmic plot of N0

xys,d ; Nxys,dyNxys1d for coding DNA. Note that the data fall on straight
lines, so Eq. (1) holds. In all 16 yeast chromosomes there are ten occurrences of DTR of length greater or equal to 10, which are
not shown on the graph because they belong to putative genes (they are denoted by “not experimental” in the GenBank database).
(b) Double logarithmic plot of N0

xys,d for the noncoding DNA. Now, the data for the first three groups can be fit by a straight
line, so Eq. (2) approximately holds. We find that the slope m ­ 4.7, 4.2, and 4.8 for the first three groups of DTR [25]. The
other three groups of DTR cannot be fit by power-law functions [26]. As an example of psr , ,d being a function of both r and

�
,

we include the results of simulations (dot-dashed bold line) fitting the second and the third groups of repeats. For TA, AT repeats,
psr , ,d depends on

�
as a step function: for 1 , r # 2: psr , ,d ­ 0.15, when 0 , , , 6; 0.60, when 6 # , , 13; and 0, when

, $ 13. For 0 , r # 1: psr , ,d ­ 0.85, when 0 , , , 6; 0.40, when 6 # , , 13; and 1, when , $ 13. For CA, AC, TG, GT
repeats, psr , ,d is also a step function of

�
: for 1 , r # 2: psr , ,d ­ 0.016, when 0 , , , 5; 0.48, when 5 # , , 8; 0.32,

when 8 # , , 18; and 0, when , $ 18. For 0 , r # 1: psr , ,d ­ 0.984, when 0 , , , 5; 0.52, when 5 # , , 8; 0.68, when
8 # , , 18, and 1, when , $ 18. In case of both groups of repeats, we start from a random sequence with equal concentration of
all dimers 1y16 ­ 0.0625 and produce 106 iterations of the random multiplicative process.

can be described by a Markov process [15], defined by
a 16 3 16 matrix P, whose elements Psxyd szwd are the
conditional probabilities of finding a dimer zw after a
dimer xy. The length distribution function of dimeric
tandem repeats sxyd, of length , is

Ns,d ­ LpxyP,21
sxyd sxyds1 2 Psxyd sxydd

2 , 10
2jkM

xy j?,, (3)

where kM
xy ; log10 Psxyd sxyd, L is the length of DNA

sequence, and pxy is the probability of finding a dimer
xy in the large L limit [16]. In cases where the
semilogarithmic plot of Ns,d is a straight line, we find
that the actual slopes kxy (which we calculate by linear
regression) does not differ from kM

xy by more than 10%,
i.e., jkxy 2 kM

xyjykxy , 0.1 [17].
(ii) Noncoding.—Previous models of simple sequence

repeat expansion do not resolve the question of long
tails of DTR length distribution functions in noncoding
DNA [18]. Here, we develop a model that reproduces the
observed DTR distributions. We assume that in a single
mutation, a repeat of length , can expand or contract to a
repeat of length r,, with conditional probability psr , ,d,

where
Z `

0

psr , ,d dr ­ 1 . (4)

The growth (r . 1) or contraction (r , 1) of the repeat
can be caused by several types of mutations, such
as unequal chromosomal crossing over [13,18] when a
parental chromosome can elongate or shrink by some
fraction of its length, or slippage during replication (see
[19,20], and references therein), which leads to insertions
or deletions of large fractions of repeats.

After t steps of evolution the length of the repeat is
given by , ­ ,0 ?

Q
i­t
i­1 ri . Such a random multiplicative

process leads, in many cases, to a stable distribution of
repeat length Ns,d in the long time limit (t ! `). To
avoid extinction of repeats, one can either (a) set a non-
zero probability to reappear, or (b) set psr , ,d ­ 0 when
rl # 1 [21].

It is impossible to find Ns,d analytically in the general
case. However, for the case where this conditional
probability psr , ,d is a function only of r , i.e., can be
written in the form

psr , ,d ­

Ω

Csrd, r, . 1 ,

0, r, # 1 ,
(5)
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FIG. 2. Semilogarithmic plot of N0
xys,d for all primate se-

quences in GenBank; as an example we show the combined
results for GA, AG, TC, CT . Note that the data for coding DNA
fall on a straight line, so Eq. (1) holds. The data for noncod-
ing DNA can be approximately fit by a power-law function, so
Eq. (2) holds. We find that the exponent m ­ 3.5 for fitting
range , [ f5, 35g, with confidence value R ­ 0.98. The expo-
nent is sensitive to the fitting range, e.g., if we concentrate our
attention at the tail of the distribution , [ f10, 35g we get ex-
ponent m ­ 3. The difference of length distribution functions
for coding and noncoding DNA is dramatic; one can observe a
DTR of length of ten dimers in noncoding DNA (with proba-
bility, roughly, p ø 1025), while it is 7 orders of magnitude
less probable to find such DTR in coding DNA sp ø 10212d.

the dynamics in terms of a new variable z ; ln , becomes
a random additive process—i.e., simple diffusion in a
semi-infinite space z $ 0 with a reflecting wall at z ­ 0

[22] and an attractive uniform potential [23]. The length
distribution function N̄szd for the new variable z is given
by

N̄szd , e2kz , (6)

where k is a constant which depends on the conditional
probability Csrd [24]. Since z ­ ln ,, Eq. (6) can be
rewritten in the power-law form,

Ns,d , ,
2m, (7)

which agrees with the experimental findings, Eq. (2).
Here m ­ k 1 1, because Ns,dd, ­ N̄szddz, and dz ­

d,y,.
Next we relate the value of m to the specific form

of Csrd. To this end, we introduce the time dependent
distribution N̄sz, td. From the master equation for the z

variable, written in the continuum limit,
dN̄sz, td

dt
­ 2N̄sz, td 1

Z 1`

2`
N̄sz 2 x, tdCsxd dx , (8)

and the stationarity condition

dN̄sz, tdydt ­ 0 , (9)

it follows that in the case where psr , ,d is of the form of
Eq. (5), Ns,d exhibits a power-law behavior with m being

a root of the equation
Z `

0

rm21Csrd dr ­ 1 . (10)

Equation (10) has a trivial solution m ­ 1, due to the
normalization (4). Depending on the function Csrd, there
may be, in addition, m . 1 roots of Eq. (10).

To illustrate, suppose

Csrd ­ p1dsr 2 1y2d 1 p2dsr 2 2d , (11)

where p1 1 p2 ­ 1 and dsrd is the Dirac delta function.
Then, Eq. (10) can be written as

p1s1y2dm21 1 p22m21
­ 1 , (12)

which has a root m ­ 1 1 log2sp1yp2d. Note that m
ranges from 2 to 4.5 if p1yp2 ranges from 2 to 11.3. The
fact that p1 is greater than p2 means that the probability
for a repeat to shrink is larger than the probability to
expand, which is biologically plausible since the repeats
are preserved from unlimited expansion—i.e., the average
repeat length does not diverge. In mathematical terms, the
restriction p1yp2 . 1 is a necessary condition to obtain
a stable probability distribution function, for otherwise
condition (9) is not satisfied. This example shows that
the model can produce power-law distributed repeats
with any given exponent m . 1. The explanation of
the empirical distributions for various kinds of repeats
requires further study, which should take into account
their specific biophysical and biochemical properties.

The assumption that psr , ,d ; Csrd is independent of
, is an approximation. Because of the specific biochemi-
cal mechanisms, mutation rates may depend on the length
, of the DTR [20]. Even though this , dependence causes
deviation of the model distributions from a power-law be-
havior, the power-law functions often provide satisfactory
approximations to the experimental data [25].

To further test the model, we compute numerically
the DTR length distributions in the case when psr , ,d
depends both on r and ,. As it follows from our analysis,
the length distribution of various DTR differ significantly
from each other in various organisms. Varying psr , ,d,
we find even better agreement with experimental data
[Fig. 1(b)] for each particular case. The nonuniversality
of psr , ,d is biologically plausible since the mutation rates
may strongly depend on the organism as well as on the
repeat type. However, such mutation rates are presently
not known. Therefore, the model can serve as a tool for
determining and testing the mutation rates by fitting the
experimental data.

In summary, we propose a mathematical description of
actual mutational processes for noncoding DNA and show
that these processes can produce nonexponential, broad
tails of DTR length distribution functions. In contrast,
coding DNA are more preserved from the DTR expansion
since such mutations would lead to a nonfunctional pro-
tein and as a result to the extinction of the organism. We
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argue that this fact explains the exponential DTR distri-
bution functions in coding sequences. The properties of
DTR may serve as additional information in various ap-
plications such as distinguishing between coding and non-
coding DNA and understanding the molecular evolution.
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