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According to the leading models in modern finance, the presence of intraday lead-lag relationships
between financial assets is negligible in efficient markets. With the advance of technology, however,
markets have become more sophisticated. To determine whether this has resulted in an improved
market efficiency, we investigate whether statistically significant lagged correlation relationships exist
in financial markets. We introduce a numerical method to statistically validate links in correlation-
based networks, and employ our method to study lagged correlation networks of equity returns in
financial markets. Crucially, our statistical validation of lead-lag relationships accounts for multiple
hypothesis testing over all stock pairs. In an analysis of intraday transaction data from the periods
2002–2003 and 2011–2012, we find a striking growth in the networks as we increase the frequency
with which we sample returns. We compute how the number of validated links and the magnitude
of correlations change with increasing sampling frequency, and compare the results between the two
data-sets. Finally, we compare topological properties of the directed correlation-based networks from
the two periods using the in-degree and out-degree distributions and an analysis of three-node motifs.
Our analysis suggests a growth in both the efficiency and instability of financial markets over the past
decade.
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1. Introduction

Modern financial markets have developed lives of their own.
This fact makes it necessary that we not only monitor financial
markets as an ‘auxiliary system’ of the economy, but that we
develop a methodology for evaluating them, their feedback
on the real economy and their effect on society as a whole
(Hall 2010, Cecchetti and Kharroubi 2012). The events of
the recent past have clearly demonstrated that the everyday
life of the majority of the world’s population is tied to the
well-being of the financial system. Individuals are invested in
stock markets either directly or indirectly, and shocks to the
system (be they endogenous or exogenous) have an immense
and immediate impact. Thus, the need for a robust and efficient
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financial system is becoming stronger and stronger. These two
critical concepts have been discussed and heatedly debated for
the past century, with the efficient market hypothesis (EMH)
in the center of the debate.

The EMH (Tobin 1969, Malkiel and Fama 1970) stipulates
that all available information (or only past prices in the weak
variant of the hypothesis) is already reflected in the current
price and it is therefore not possible to predict future values in
any statistical method based on past records (Malkiel 2003).
The EMH has been questioned by applying statistical tests to
NewYork Stock Exchange (NYSE) returns (Lo and MacKinlay
1988, Shmilovici et al. 2003) in which the authors formulated
the problem equivalent to the EMH, and showed by contrast
that an efficient compression algorithm they proposed was able
to utilize structure in the data—which would not be possible
if the hypothesis were in fact true. The possibility for such
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2 C. Curme et al.

compression suggests the data must be somehow structured.
This encourages us to explore methods of modelling and exp-
loring this structure in ways that can be applied to real-world
markets.

Many efforts have thus been devoted to uncovering the
true nature of the underlying structure of financial markets.
Much attention has been given to understanding correlations in
financial markets and their dynamics, for both daily (Mantegna
1999, Gopikrishnan et al. 2000, Cizeau et al. 2001, Forbes and
Rigobon 2002, Campbell et al. 2008, Podobnik and Stanley
2008, Carbone 2009, Aste et al. 2010, Pollet and Wilson 2010,
Kenett, Preis et al. 2012, Kenett, Raddant et al. 2012) and
intra-day time scales (Bonanno et al. 2001, Borghesi et al.
2007, Tumminello, Di Matteo et al. 2007, Munnix et al. 2010).
More recently, other measures of similarity have been intro-
duced, such as Granger-causality analysis (Billio et al. 2012)
and partial correlation analysis (Kenett et al. 2010), both of
which aim to quantify how the behaviour of one financial asset
provides information about the behaviour of a second asset. For
these different measures of co-movement in financial markets,
however, the main question that remains is how to uncover
underlying meaningful information.

An analysis of synchronous correlations of equity returns
has shown that a financial market usually displays a nested
structure in which all the stock returns are driven by a com-
mon factor, e.g. a market index, and are then organized in
groups of like economic activity—such as technology, ser-
vices, utilities or energy—that exhibit higher values of average
pair correlation. Within each group, stocks belonging to the
same sub-sector of economic activity, e.g. ‘insurance’ and ‘re-
gional banks’ within the financial sector, show an even higher
correlation degree. Such a structure has been recognized using
very different methods of analysis, ranging from random ma-
trix theory (Laloux et al. 2000, Gopikrishnan et al. 2001), to
hierarchical clustering (Mantegna 1999), to correlation-based
networks (Mantegna 1999, Bonanno et al. 2003, Onnela et al.
2003). The several methods devised to construct correlation-
based networks can be grouped into two main categories:
threshold methods and topological/hierarchical methods. Both
approaches start from a sample correlation matrix or, more
generally, a sample similarity measure. Using the threshold
method, we set a correlation threshold and construct a network
in which any two nodes are linked if their correlation is larger
than the threshold. As we lower the threshold value, we see
the formation of groups of stocks (economic sub-sectors) that
progressively merge to form larger groups (economic sectors)
and finally merge into a single group (the market). The ad-
vantage of this approach is that, due to the finite length of
data series, threshold networks are very robust to correlation
uncertainty. The disadvantage of threshold-based networks is
that it is difficult to find a single threshold value to display,
in a single network, the nested structure of the correlation
matrix of stock returns (see Kenett et al. 2010). Topological
methods to construct correlation-based networks, such as the
minimal spanning tree (MST) (Mantegna 1999, Bonanno et al.
2001, Bonanno et al. 2003, Onnela et al. 2003) or the planar
Maximally filtered graph (PMFG) (Tumminello et al. 2005),
are based solely on the ranking of empirical correlations. The
advantage of this approach is that these methods are intrin-
sically hierarchical and are able to display the nested struc-

ture of stock-return correlations in a financial market. The
disadvantage of this approach is that these methods are less
stable than threshold methods with respect to the statistical
uncertainty of data series, and it is difficult to include informa-
tion about the statistical significance of correlations and their
ranking (Tumminello, Coronnello et al. 2007). Thus, it is a
challenge of modern network science to uncover the significant
relationships (links) between the components (nodes) of the
investigated system (Havlin et al. 2012).

Although much attention has been devoted to the study of
synchronous correlation networks of equity returns (see
Tumminello et al. 2010 for a review of the topic), compar-
atively few results have been obtained for networks of lagged
correlations (Huth and Abergel 2014). Neither method of con-
structing correlation-based networks is readily extendable to
the study of directed lagged correlations in a financial market.
The lagged correlations in stock returns are small, even at time
horizons as short as 5 min, and are thus strongly influenced by
the statistical uncertainty of the estimation process. The use
of topological methods to construct a lagged correlation-based
network of stock returns is difficult because they only take into
consideration the ranking of correlations and not their actual
values. The result could be a network in which many links are
simply caused by statistical fluctuations. On the other hand,
standard threshold methods are also difficult to apply because
it is difficult to find an appropriate threshold level and, more
importantly, the threshold selected in these methods is usually
the same for all stock pairs. This is a problem if we want to
study lagged correlations because the statistical significance
of a lagged-correlation may depend on the return distribution
of the corresponding pair of stocks, and such distributions
might vary across stocks—a consequence, for example, of the
different liquidity of stocks.

Here, we introduce a method for filtering a lagged corre-
lation matrix into a network of statistically validated directed
links that takes into account the heterogeneity of stock return
distributions. This is done by associating a p-value with each
observed lagged correlation and then setting a threshold on p-
values, i.e. setting a level of statistical significance corrected for
multiple hypothesis testing. We apply our method to describe
the structure of lagged relationships between intraday equity
returns sampled at high frequencies in financial markets. In par-
ticular, we investigate how the structure of the network changes
with increasing return sampling frequency, and compare the
results using data from both the periods 2002–2003 and 2011–
2012. It should be noted that the two investigated time periods
are quite different if we consider that the fraction of volume
exchanged by algorithmic trading in the US equity markets has
increased from approximately 20% in 2003 to more than 50%
in 2011. In both periods, we find a large growth in the connect-
edness of the networks as we increase the sampling frequency.

The paper is organized as follows. Section 2 introduces
the method used to filter and validate statistically significant
lagged correlations from transaction data. Section 3 analyzes
the structure of the resulting networks and investigates how this
structure evolves with changing return sampling frequency.
In section 4, we discuss the application of our method to the
construction of synchronous correlation networks. Finally, in
section 5, we discuss the implications of our results for the
efficiency and stability of financial markets.
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Statistically validated financial intraday lead-lag relationships 3

2. Statistically validated lagged correlation networks

We begin the analysis by calculating the matrix of logarithmic
returns over given intraday time horizons. We denote by pn(t)
the most recent transaction price for stock n occurring on or
before time t during the trading day. We define the opening
price of the stock to be the price of its first transaction of the
trading day. Let h be the time horizon. Then for each stock we
sample the logarithmic returns,

rn,t ≡ log(pn(t)) − log(pn(t − h)), (1)

every h minutes throughout the trading day, and assemble these
time series as columns in a matrix R. We then filter R into two
matrices, A and B, in which we exclude returns during the last
period h of each trading day from A and returns during the
first period h of each trading day from B. From these data, we
construct an empirical lagged correlation matrix C using the
Pearson correlation coefficient of columns of A and B,

Cm,n = 1
T − 1

T∑

i=1

(Am,i − ⟨Am⟩)(Bn,i − ⟨Bn⟩)
σmσn

, (2)

where ⟨Am⟩ and σm are the mean and sample standard devia-
tion, respectively, of column m of A, and T is the number of
rows in A (and B). Here, we set the lag to be one time horizon
h. A schematic of this sum is diagrammed in figure 1.

The matrix C can be considered a weighted adjacency matrix
for a fully connected, directed graph. To filter the links in this
graph according to a threshold of statistical significance, we
apply a shuffling technique (Efron and Tibshirani 1993). The
rows of A are shuffled repeatedly without replacement in order
to create a large number of surrogated time series of returns.
After each shuffling, we re-calculate the lagged correlation
matrix (2) and compare this shuffled lagged correlation matrix
C̃ to the empirical matrix C . For each shuffling, we thus have
an independent realization of C̃ . We then construct the matrices
U and D, where Um,n is the number of realizations for which
C̃m,n ≥ Cm,n , and Dm,n is the number of realizations for which
C̃m,n ≤ Cm,n .

From matrix U , we associate a one-tailed p-value with all
positive correlations as the probability of observing a correla-
tion that is equal to or higher than the empirically measured
correlation. Similarly, from D, we associate a one-tailed p-
value with all negative correlations. In this analysis, we set the
threshold at p = 0.01. We must adjust our statistical threshold,
however, to account for multiple comparisons. We use the
conservative Bonferroni correction for a given sample size of
N stocks. For example, for N = 100 stocks the corrected
threshold will be 0.01/N 2 = 10−6. We thus construct 106

independently shuffled surrogate time series. If Um,n = 0 we
can associate a statistically-validated positive link from stock
m to stock n (p = 0.01, Bonferroni correction). Likewise, if
Dm,n = 0 we can associate a statistically validated negative
link from stock m to stock n. In this way, we construct the
Bonferroni network (Tumminello et al. 2011). In appendix 1,
we discuss the probability that using our approximated method
we will wrongly identify a link as statistically significant (i.e.
have a false positive).

For the sake of comparison, for each time horizon h we
also construct the network using p-values corrected according
to the false discovery rate (FDR) protocol (Benjamini and

Hochberg 1995). This correction is less conservative than the
Bonferroni correction and is constructed as follows. The
p-values from each individual test are arranged in increasing
order (p1 < p2 < · · · < pN 2 ), and the threshold is defined as
the largest k such that pk < k 0.01/N 2. In the FDR network,
our threshold for the matrices U or D is thus not zero but the
largest integer k such that U or D has exactly k entries fewer
than or equal to k. From this threshold, we can filter the links
in C to construct the FDR network (Tumminello et al. 2011).
We note that the Bonferroni network is a subgraph of the FDR
network.

Because we make no assumptions about the return
distributions, this randomization approach is especially
useful in high-dimensional systems in which it can be diffi-
cult to infer the joint probability distribution from the data
(Tumminello, Coronnello et al. 2007). We also impose no topo-
logical constraints on the Bonferroni or FDR networks. This
method serves to identify the significant positive and negative
lagged correlation coefficients in a way that accounts for het-
erogeneities in relationships between the returns of stocks. An
alternative, but closely related approach, would be to construct
a theoretical distribution for correlation coefficients under the
null hypothesis of uncorrelated returns sampled from a given
joint distribution (Biroli et al. 2007). For a desired confidence
level, one could then construct a threshold correlation, beyond
which empirical correlations are validated. Such an approach
typically assumes equal marginal distributions for returns, and
must fix a uniform correlation threshold for all relationships.
At the expense of computational time, our method is flexible
in that it permits heterogeneities in marginal distributions. We
compare the results of the two approaches in appendix 2.

3. Lagged correlation networks in NYSE

We study and compare two different data-sets. The first Data-
set comprises returns of 100 companies with the largest mar-
ket capitalization on the NYSE during the period 2002–2003
(501 trading days), which was investigated in Tumminello,
Di Matteo et al. (2007). For the second data-set, we consider
returns during the period 2011–2012 (502 trading days) of 100
companies with the largest market capitalization on the NYSE
as of 31 December 2012 (retrieved from the Trades and Quotes
database, Wharton Research Data Services, http://wrds-web.
wharton.upenn.edu/wrds/). Market capitalization figures were
obtained fromYahoo Finance web service (http://finance.yahoo.
com). For each company we obtain intraday transaction records.
These records provide transaction price data at a time resolu-
tion of one second. The stocks under consideration are quite
liquid, helping to control for the problem of asynchronous
transactions and artificial lead-lag relationships due to different
transaction frequencies (De Jong et al. 1996). Transaction data
were cleaned for the cancelled trades and trades reported out
of sequence. We then sample returns at time horizons of 5, 15,
30, 65 and 130 min.

We report summary statistics in table 1, including the lengths
of time series T from equation (2), as well as the mean ⟨ρ⟩
and standard deviation σρ of synchronous Pearson correlation
coefficients between distinct columns of the returns matrix
R for each time horizon h. We also show the mean ⟨Cm,n⟩
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4 C. Curme et al.

Figure 1. Schematic of lagged correlation calculation for a time horizon h = 130 min. The sum Cm,n is generated using products of returns
from stocks m and n that are linked by an arrow. We consider only time horizons h that divide evenly into the 390 min trading day.

Table 1. Summary statistics of 2002–2003 and 2011–2012 data-sets.

Period T h ⟨ρ⟩ σρ ⟨Cm,n⟩ σC

38 577 5 min 0.267 0.077 0.008 0.024
12 525 15 min 0.290 0.092 0.007 0.025

2002–2003 6012 30 min 0.307 0.102 0.005 0.025
2505 65 min 0.317 0.110 0.015 0.029
1002 130 min 0.327 0.115 0.022 0.038

38 654 5 min 0.380 0.121 0.006 0.024
12 550 15 min 0.411 0.115 0.006 0.022

2011–2012 6024 30 min 0.422 0.115 0.017 0.024
2510 65 min 0.448 0.119 −0.003 0.027
1004 130 min 0.452 0.126 −0.019 0.033

Figure 2. Distribution of lagged correlation coefficients for all
N = 100 stocks at a time horizon h = 15 min. The minimum positive
coefficients and maximum negative coefficients selected using both
Bonferroni and FDR filtering procedures are shown. We note that
these methods select coefficients from the tails of the distribution,
without fixing a uniform threshold for all pairs of stocks.

and standard deviation σC of entries in the lagged correlation
matrix C .

Figure 2 displays bounds on the positive and negative coef-
ficients selected by this method for both Bonferroni and FDR
networks at a time horizon of h = 15 min.

In figure 3, we display plots of each statistically validated
lagged correlation network obtained from the 2011–2012 data
(Bonferroni correction). At time horizons of h = 130 and
h = 65 min we validate one and three links, respectively. It

is somewhat remarkable that we uncover any persistent rela-
tionships at such long time horizons.

We see a striking increase in the number of validated links at
small intraday time horizons, below h = 30 min in particular.
This is likely due to a confluence of two effects: (i) with
decreasing h, we increase the length T of our time series,
gaining statistical power and therefore the ability to reject the
null hypothesis; (ii) at small h, we approach the timescales
over which information and returns spill over across different
equities. In appendix 3, we provide evidence that diminishing
the time horizon h reveals more information about the system
than is obtained by increasing the time series length T alone.

It is clear visually that the validated links of positive
correlation vastly outnumber the validated links of negative
correlation. We plot the number of validated links in both the
Bonferroni and FDR networks for the 2002–2003 and 2011–
2012 data-sets in figure 4, where the decrease in number of all
validated links for increasing time horizon is apparent. Note
that for a given time horizon, we usually validate more links in
the 2002–2003 data-set than in the 2011–2012 data-set. This
suggests that there has been an increase in market efficiency
over the past decade. We revisit this idea in subsequent portions
of this paper, where we study the properties of the network in-
and out-degree distributions and the characterization of three-
node motifs.

We also explore how the number of validated links decreases
for a fixed time horizon h, but a changing time lag. We build
a lag l into the lagged correlation matrix (2) by excluding the
last l returns of each trading day from matrix A and the first l
returns of each trading day from matrix B. Thus, the present
analysis uses l = 1. In appendix 3, we plot the decreasing
number of validated links with increasing l for h = 15 min.

D
ow

nl
oa

de
d 

by
 [B

os
to

n 
U

ni
ve

rs
ity

], 
[M

r H
 E

ug
en

e 
St

an
le

y]
 a

t 0
8:

07
 0

7 
M

ay
 2

01
5 



Statistically validated financial intraday lead-lag relationships 5

Figure 3. Illustrations of Bonferroni networks constructed from statistically-validated lagged correlations for various time horizons h. Data
were obtained from returns of large market-capitalization companies on the NYSE in 2011–2012. Nodes are coloured by industry. Blue links
represent positive correlations; red links represent negative correlations.

We must also measure the extent to which the number of
validated lead-lag relationships can be disentangled from the
strength of those relationships. Figure 5 thus shows plots of the
average magnitude of lagged correlation coefficients selected
by the Bonferroni and FDR networks. Although we validate
more links at small time horizons, we note that the average
magnitude of the selected coefficients tends to decrease. At
short time horizons h we correlate time series of comparatively
large length T , narrowing the distribution of entries in the
shuffled lagged correlation matrix C̃ and gaining statistical
power. We are thus able to reject the null hypothesis even for
lead-lag relationships with a modest correlation coefficient.

Finally, in figure 6, we characterize the topologies of the
statistically validated networks by studying the properties of
their in-degree and out-degree distributions. We make two
observations. First, we note that both the in-degree and out-
degree distributions appear more homogeneous in the 2002–
2003 period than the 2011–2012 period, i.e. the 2011–2012
data exhibit large heterogeneities, particularly in the in-degree
distributions, in which many nodes have small degrees but few

nodes have very large degrees, as can be seen in the extended
tails of the distributions. Second, we observe that in both the
2002–2003 and 2011–2012 data, there are more nodes with
large in-degrees than out-degrees. Although few individual
stocks have a strong influence on the larger financial market, it
appears that the larger financial market has a strong influence
on many individual stocks, especially at short time horizons.

We further investigate this point by studying the relative
occurrence of three-node network motifs in the Bonferroni
networks (Milo et al. 2002). We find that, of all motifs featuring
more than one link, the ‘021U’ motif (two nodes influencing a
common third node) occurs frequently in the recent data, and in
fact occurs in over 80% of node triplets having more than one
link between them for time horizons greater than h = 65 min.
In the 2002–2003 data, this motif is also the most common at
every time horizon except h = 65 min. Figure 7 plots the occur-
rence frequencies of these motifs. These features can be related
to the information efficiency of the market. In the 2011–2012
data-set, we find a dominant motif in which a large number of
stocks influence only a few other stocks. Predictive information
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6 C. Curme et al.

Figure 4. Plots of the number of positive and negative validated links for both Bonferroni and FDR lagged correlation networks. The decrease
in number of validated links for increasing time horizon is apparent in both the 2002–2003 and 2011–2012 data-sets. The vertical axis is
presented on a logarithmic scale that is linearized near zero.

Figure 5. Average magnitude (absolute value) of lagged correlation coefficients filtered in Bonferroni and FDR networks. Magnitudes appear
to grow with increasing time horizon of return sampling. Error bars represent plus-or-minus one standard deviation. Results are displayed
only for networks containing at least five links.

regarding a given stock, therefore, tends to be encoded in the
price movements of many other stocks and so is difficult to
extract and exploit. In contrast, the distributions of degrees
and motifs in the 2002–2003 data are more homogeneous.
Although there are more nodes with large in-degrees, there are
also more nodes with large out-degrees. If a stock has a large
out-degree, its price movements influence the price movements

of many other stocks. These sources of exploitable information
have all but disappeared over the past decade.

4. Synchronous correlation networks

To construct synchronous correlation networks using the
methodology described in section 2, we use the unfiltered
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Statistically validated financial intraday lead-lag relationships 7

Figure 6. In- and out-degree distributions for FDR networks from 2002–2003 (blue) and 2011–2012 (green). Smoothed distributions are
obtained using a kernel density estimate with a Gaussian kernel. With the exception of the h = 30 min in-degree distributions, at each of
the 30, 15, and 5 min time horizons the distributions from 2002–2003 and 2011–2012 are statistically distinct (p < 0.05, all test statistics
W > 130, two-tailed two-sample Wilcoxon rank-sum tests, Bonferroni correction applied).

columns of R as our time series such that each entry Cm,n
of the empirical correlation matrix is the Pearson correlation
between columns m and n of R. We then independently shuffle
the columns of R, without replacement, when constructing the
surrogated time series. We find that with the same significance
threshold of p = 0.01, in 2011–2012 both the Bonferroni
and FDR networks are almost fully connected, with well over
4500 of the N (N − 1)/2 = 4950 possible links validated in

all networks over all time horizons. Our method is thus quite
sensitive to the presence or absence of correlations between
time series.

Figure 8 plots the empirical synchronous correlations against
time horizon for all stocks considered in both data-sets. We see
a clear increase in the magnitude of these coefficients as the
time horizon grows, a phenomenon known as the Epps Effect
(Epps 1979, Tumminello, Di Matteo et al. 2007). It is known
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8 C. Curme et al.

Figure 7. Percentage occurrence of all 14 possible directed three-node motifs with more than one link in Bonferroni networks. The total
number of such motifs in 2002–2003 are 40 (h = 65 min), 1296 (h = 30 min), 17 545 (h = 15 min) and 92 673 (h = 5 min). In 2011–2012,
these counts are 0 (h = 65 min), 8,710 (h = 30 min), 13 850 (h = 15 min) and 46 687 (h = 5 min).

Figure 8. (a) Plot of mean synchronous correlation coefficients in both 2002–2003 and 2011–2012 data. Error bars represent plus-or-minus
one standard deviation of the mean. (b) Histograms of correlation coefficients for returns sampled at a 15 min time horizon. Solid curves show
kernel density estimates using a Gaussian kernel. Depicted distributions are statistically distinct (p < 0.001, test statistic W = 19415612,
two-tailed two-sample Wilcoxon rank-sum test).

that lagged correlations may in part contribute to this effect
(Toth and Kertesz 2009). The extent of this contribution is an
active area of investigation (Curme et al. in preparation). The
synchronous correlations are also significantly higher in the
recent data, suggesting that, despite the increased efficiencies
shown in figure 4, there is also an increase in co-movements in

financial markets since 2003, heightening the risk of financial
contagion (see for example Song et al. 2011, Kenett, Raddant
et al. 2012).

Figure 8(b) shows the distribution of correlation coefficients
at h = 15 min for both 2002–2003 and 2011–2012 data-sets.
We observe a slightly bi-modal distribution of synchronous
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Statistically validated financial intraday lead-lag relationships 9

correlation coefficients in the 2002–2003 data across all time
horizons h. Most coefficients are positive, but there is also a
small number of negative coefficients among these high market
capitalization stocks. This quality disappears in the 2011–2012
data, and all correlation coefficients are positive.

5. Discussion

In this paper, we propose a method for the construction of
statistically validated correlation networks. The method is
applicable to the construction of both lagged (directed) and
synchronous (undirected) networks, and imposes no topologi-
cal constraints on the networks. The sensitivity of the method
to small deviations from the null hypothesis of uncorrelated
returns makes it less useful for studying the synchronous corre-
lations of stocks, as these equities tend to display a considerable
degree of correlation and we validate almost all possible links
in the network. The method is apt, however, for the study of
lagged correlation networks. We are able to adjust the sensi-
tivity of the method with our choice of p-value and protocol
for multiple comparisons. Here we show that, with the conser-
vative Bonferroni correction and p-value = 0.01, we are able
to compare changes in network connectivity with increasing
return sampling frequency between old and new data-sets. The
primary drawback to our method is its computational burden,
which grows as O(N 4) for N time series.

We find that for timescales longer than one hour, significant
lead-lag relationships that capture return and information spill-
over virtually disappear. For timescales smaller than 30 min,
however, we are able to validate hundreds of relationships.
According to the efficient market hypothesis, there can be
no arbitrage opportunities in informationally efficient finan-
cial markets. However, lagged correlations may not be easily
exploitable due to the presence of market frictions, including
transaction costs, the costs of information processing and bor-
rowing constraints.

Between the time periods 2002–2003 and 2011–2012, the
synchronous correlations among these high market capitaliza-
tion stocks grow considerably, but the number of validated
lagged-correlation relationships diminish. We relate these two
behaviours to an increase in the risks of financial contagion
and an increase in the informational efficiency of the market,
respectively. We find that networks from both periods exhibit
asymmetries between their in-degree and out-degree distri-
butions. In both there are more nodes with large in-degrees
than large out-degrees, but in the 2011–2012 data, nodes with
large in-degrees are represented by the extended tails of the
degree distribution and, in contrast, the 2002–2003 distribution
exhibits a greater uniformity. A comparison between in-degree
and out-degree distributions shows that nodes with high in-
degree are much more likely than nodes with high out-degree,
especially for the 2011–2012 data. This evidence is also in-
terpreted in terms of informational efficiency of the market.
Indeed, a large out-degree of a stock implies that knowledge
of its return, at a given time, may provide information about
the future return of a large number of other stocks. On the
other hand, a large in-degree of a stock indicates that informa-
tion about its return at a given time can be accessed through
the knowledge of past returns of many stocks. There are also

many more nodes with large out-degrees in the 2002–2003
data than in the 2011–2012 data. We relate these observations
to an increased information efficiency in the market. Such an
interpretation is also supported by the analysis of three-node
motifs, which shows an apparent dominance of motif 021U
with respect to all the others.

In the future, we could extend this work by incorporating
a prediction model to measure the degree to which the infor-
mation contained in these validated networks is exploitable
in the presence of market frictions. We could also investigate
the characteristics of nodes belonging to different industries,
as well as the presence of intraday seasonalities (Allez and
Bouchaud 2011, Curme et al. in preparation). Such features are
potentially relevant to prediction models. Finally, although our
analysis restricts itself to using the Pearson product-moment
correlation, other measures, such as a lagged Hayashi-Yoshida
estimator (Hayashi and Yoshida 2005), could be used to probe
correlations at the smallest (inter-trade) timescales while min-
imizing the problem of asynchronous trades.
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Appendix 1. Probability of a false positive link

The one-tailed p-value associated with positive correlations repre-
sents the probability of observing a correlation between two elements,
i and j , that is larger than or equal to the one observed, ρobs , under
the null hypothesis that i and j are uncorrelated,

p-value(ρobs) = P(ρ > ρobs). (A1)

Our objective in the paper is to select all the correlations with a p-value
smaller than a given univariate statistical threshold q0, e.g. q0 = 0.01
or q0 = 0.05, corrected for multiple hypothesis testing through the
Bonferroni correction, that is, divided by the total number of tests, N2

in our case (where N = 100 is the number of stocks). The question
is: what is the probability that a correlation with a p-value p larger
or equal to p0 = q0/N 2 is (wrongly) indicated as a statistically
significant one according to the shuffling method? Operatively, what
is the probability that, over the Q = k N 2 independent replicates of
the data, a correlation between i and j larger than the observed one
has never been observed?

If we set the p-value, p, of ρobs equal to q
N 2 (where q is a quantity

that ranges between 0 and N 2), the question is: what is the probability
that, over Q = k N 2 independent draws (Q = 100 · N 2 = 106
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bootstrap replicates with our method) a value of correlation larger
than ρobs is never obtained? This probability is

P(null|p) = (1 − p)Q , (A2)

where ‘null’ indicates the event that a value of correlation larger than
ρobs has never been obtained over Q = k N 2 random replicates of
data. This probability can be used to calculate the probability that
p = q/N 2 is larger than or equal to p0 = q0/N 2, conditioned to
the event that a value of correlation larger than ρobs has never been
obtained over Q = k N 2 draws. This is done using Bayes’ rule, under
the assumption that the marginal distribution of p-value p is uniform
in [0, 1], i.e. the density function is f (p) = 1 and then, integrating
over p,

P(p ≥ p0|null) =
∫ 1

p0

P(null|p) f (p)

P(null)
d p

=
∫ 1

p0

(Q + 1)(1 − p)Qd p = (1 − p0)Q+1, (A3)

where we used the fact that P(null) =
∫ 1

0 P(null|p) f (p)d p = 1
Q+1 .

In our method, k = 100, and the sample size is N = 100. Therefore,

P(p ≥ p0|null) =
(

1 − q0

N 2

)k N 2+1
∼=

(
1 − q0

N 2

)k N 2

∼= e−k q0 .

(A4)
It is interesting to note that, as soon as the level of statistical signifi-
cance is corrected through the Bonferroni correction (p0 = q0/N 2),
where q0 is the univariate level of statistical significance, and the
number, Q, of independent replicates is a multiple of the number of
tests, Q = k N 2, the probability P(p ≥ p0|null) is approximately
independent of the sample size (N ).

With our approximated method to estimate correlation p-values, the
probability that we select a positive correlation as a statistically signif-
icant one at the confidence level p0 = q0/N 2 = 0.01/1002 = 10−6,
while it is actually not significant at that level of statistical confidence,
is P(q ≥ 0.01|null) = 1

e
∼= 0.368. However, the probability that a

significant correlation according to our method has a p-value larger
then 0.05/N 2 = 0.05/1002 = 5 × 10−6 is already quite small:
P(q ≥ 0.05|null) = 1

e5
∼= 0.0067. In other words, if we obtain

a validated network with 1000 links, i.e. 1000 validated positive
correlations according to our approximated method, we expect that,
on average, only seven correlations will have a one-tailed p-value
larger than 0.05/1002 = 5 × 10−6.

Appendix 2. Comparison of the bootstrap method and an
analytical one to calculate correlation p-values

Here we compare (for a sub-set of our data) the number of significant
correlations obtained according to the presented bootstrap approach
and the number of significant correlations that we may have obtained
relying upon the analytical distribution of sample pair correlations of
normally distributed data.

If x and y are uncorrelated variables that follow a normal distribu-
tion, then the probability density function of the sample correlation
coefficient, r , between x and y is Kenney and Keeping (1962)

f (r, T ) = (1 − r2)
T −1

2 −2

B( 1
2 , T −1

2 − 1)
, (B5)

where T is the length of the sample and B(q, p) is the Euler beta
function of parameters q and p. Given a level of statistical signif-
icance, q0/N 2 (already corrected for multiple hypothesis testing),

f (r, T ) can be used to set a threshold for the correlation value ρt such
that the probability P(ρ > ρt ) = q0

N 2 is

P(ρ > ρt ) =
∫ 1

ρt

f (r, T )dr = q0

N 2 . (B6)

According to this analysis, for a data sample of N time series, each
one of length T , we can say that an observed correlation, ρobs ,
is statistically significant if ρobs > ρt , where ρt is obtained by
(numerically) solving the previous non linear equation.

Table B1 shows the 2002–2003 data-set and reports the length of
data series used to calculate lagged correlations (column 1) at a given
time horizon (column 2), the quantity ρt such that P(ρ > ρt ) =
0.01/N 2 = 10−6 (column 3), the number of validated positive corre-
lations (column 4), and the number of validated negative correlations
(column 5).

Table B2 shows the number of validated positive correlations (i)
according to the shuffling method (column 3), (ii) according to the
analytical method discussed above (column 4) and (iii) common to
both methods (column 5). The results reported in the table show
that the bootstrap method we used is more conservative than the
analytical method based on the assumption that return time series
follow a normal distribution. Indeed, the number of validated positive
correlations according to the bootstrap method is always smaller than
the one obtained using the theoretical approach. Furthermore, most
of the correlations validated according to the bootstrap method are
also validated according to the theoretical method.

A similar discussion can be held about the validation of negative
correlations.

Appendix 3. Effect of lag and time series length on vali-
dated links for a fixed time horizon

We explore how the number of validated links decreases when the
time horizon h is fixed and the time lag variable l increases. A lag l
is built into the lagged correlation matrix (2) by excluding the last l
returns of each trading day from matrix A and the first l returns of each
trading day from matrix B. Thus, the results presented in the main text
are restricted to l = 1. Figure C1 plots the number of positive links
and negative links validated in the 2011–2012 data for h = 15 min as
l increases. Although for this h the length T of the time series in A and
B decrease by only ≈ 4% for each additional lag l (as each 390 min
trading day includes 390/15− l = 26− l returns), we observe a sharp
decrease in the number of validated links as l increases. The number
of validated negative links is an order of magnitude smaller than the
number of positive links, so the small peak in negative links at l = 3
for the FDR network is likely an artifact of noise.

We also investigate the effect of the time series length T on the
numbers of validated links. For h = 15 min, we partition the entire
2011–2012 time series into segments of length T = 1004, as this is
the length of the time series for the longest time horizon considered
(h = 130 min). For each segment, we generate the lagged correlation
network using 106 surrogate time series, as before. We find that the
union of all such Bonferroni networks consists of 125 distinct links,
106 of which are positive and 19 of which are negative. Although this
number is 30% of the number of links validated in the h = 15 min
network that was not partitioned (T = 12 550), it stands in contrast
to the single link that was validated in the h = 130 min Bonferroni
network using the entire time period. The number validated in each
partition is shown in figure C2. We can thus safely conclude that
decreasing the time horizon h Provides information independent of
the increased time series length T .
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Table B1. Threshold correlation values and validated links according to a normal distribution of returns.

T h ρt # pos. valid. # neg. valid

38 577 5 min 0.0242 2398 793
12 525 15 min 0.0425 754 212
6012 30 min 0.0613 158 19
2505 65 min 0.0948 43 3
1002 130 min 0.1496 3 0

Table B2. Comparison between number of validated links according to (1) bootstrap method and (2) a normal distribution of returns.

T h # pos. valid. (bootstrap) # pos. valid. (normal dist.) # pos. valid (both)

38 577 5 min 2252 2398 2230
12 525 15 min 681 754 666
6012 30 min 134 158 131
2505 65 min 29 43 26
1002 130 min 2 3 2

Figure C1. Numbers of positive and negative validated links for both Bonferroni and FDR correlation networks for varying lag l. Returns
are sampled every h = 15 min from the 2011–2012 data.

Figure C2. Numbers of positive and negative validated links for both Bonferroni and FDR lagged correlation networks for time series
segments of length T = 1004 at h = 15 min. Horizontal axis gives date of the final return in each network.
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