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Our recently published renormalization-group treatment of the crossover phenomenon for systems with
lattice anisotropy is generalized to isotropic spin systems with competing first- and
second-nearest-neighbor interactions, J, and J,. We find that scaling with respect to R =J /J, is
valid about R = 0; moreover, the crossover exponent is found to be the same as the susceptibility
exponent. These results are interesting because the critical-point exponents at R = 0 and R > O should
be the same (from universality considerations). Series-expansion analysis confirms this surprising result.

Recently Grover! and two of the present authors? each layer and J; = RJ, between the two layers
have shown independently that basic renormaliza- (see Fig. 1). )
tion-group arguments lead directly to the relation Owing to the general property of translational
¢ =7y for crossover with respect to the anisotropy invariance, it is readily seen that, in general, a

parameter R in systems with lattice anisotropy.?®
We point out here that similar arguments will
lead to the conclusion that there is scaling with re-
spect to the interaction parameter R for an iso-
tropic-spin system with competing first- and sec-
ond-nearest-neighbor interactions. This result
is rather surprising since the exponents do not
change from the pure nearest-neighbor values as
the critical temperature 7.(R) is approached.

As before, our result is valid for any lattice di-
mension d and isotropically interacting spins of
arbitrary dimension #.

Consider, for example, a two-dimensional
square lattice with first-and second-nearest-neigh-
bor isotropic-spin interactions. The Hamiltonian
is

JC—:'—JI Z§i°§j_JZZ§i.§j’ (1)
(ij) [ij]

where J;, J,>0 for ferromagnetic couplings and
the first and second sums are over the first- and

. . . FIG. 1. Two-dimensional square lattice with first-
second-nearest-neighbor spins, respectively.

and second-nearest-neighbor interactions viewed as two

Such a system may be viewed as two interacting interacting layers of two-dimensional square lattices
layers of two-dimensional square lattices with with nearest-neighbor interaction strength J, within each
nearest-neighbor interaction strength J, within layer and J; =RJ, between the two layers.
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d-dimensional isotropic-spin system with first-
and second-nearest-neighbor interactions may be
viewed as a finite number (N) of layers of d-dimen-
sional sublattices with nearest-neighbor interaction
strength J, within the layers and J; = RJ, between
the adjacent layers. We can now follow our pre-
vious work? and apply Wilson’s renormalization
iterative scheme? in each d-dimensional hyperplane
and observe (for R<< 1) how the weak-coupling
terms between the hyperplanes grow with the it-
eration procedure. After I- steps of iteration,

the effective reduced Hamiltonian has the same
form as Eq. (1) of Ref. 2. The difference is that
the sums are now over a finite number (N) of
layers,

N
Hy==3 (4% x(} | 98,0 240, En (O]

m=1

N
-R ledd xgm (i) ¢ §m+i (i) ’ (2)
2(2-11-71)/2

since §,, is scaled by a factor in each
step of the iteraction, we obtain from Eq. (2)

R, =2¥"'R, @)

Here 71 describes the behavior of the correlation

function in the d-dimensional hyperplanes.
During each iteration, the correlation length

¢ in each d-dimensional hyperplane is reduced by

half. After [ iterations we have

E(Th Rl) = 2-1 g(T, R) ’ '(43)

where 7= T, (0)/[T - T, (0)] is the reduced tem-
perature. Similarly, we can show that! the Gibbs
potential G scales as

G(1;, R)=2"G(r, R) . (4b)

The usual renormalization-group argument?
leads to the scaling relation
T1= 2!y ’ (5)
where v is the exponent for the correlation length
associated with each d-dimensional hyperplane.
Therefore we prove from Egs. (3)-(5) the gen-
eralized homogeneous scaling laws

YT, ¥ R)=X"E(r,R),
GO/* 7, ¥TR)=X'G(T,R) .

(6a)
(6b)

Thus we are able to prove that there is scaling
with respect to the interaction parameter R. This
is true in spite of the fact that the critical ex-
ponents do not change as the critical temperature
T, (R) is approached.

Equation (6b) may be put into the more familiar
form

G(t, R =T"*F(R/T°), (M

where a =2-dv is the specific-heat exponent of
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TABLE I. Padé approximants of v, based on the high-
temperature series for X on the fcc lattice with competing
first- and second-nearest-neighbor ferromagnetic cou-
plings (-++ indicates that the element is complex).

Padé slement " 7 s s s
Ising (n =1)—tenth-order series
2,2) 2.4714 3.7541 5.0628 6.3842 7.7085
2,3) 2.4974 3.7340 4.8332 6.5129
3,2) 2.4851  3.7246  5.1534  6.4263
(3,3) 2.4769  3.7479  4.9958
3,4) 2.5254 3.7689
4,3) 2.5025 3.7612
(4,4) 2.5110
Planar (r =2)—ninth-order series
(2,2) 2.5632 3.8895 5.2377 6.5893
(2,3) 2.6133 3.9044 5.1260
(3,2) 2.5546  3.8955  5.2802
3,3) 3.8857
(3,4) 2.6697
4,3) 2.5830
Heisenberg (n =3)—ninth-order series
2,2) 2.6238 3.9797 5.3555 6.7315
(2,3) 2.6933 4.0223 5.3028
3,2) 2,5823 3.9625 5.3562
3,3) te 3.9536
(3,4 2.7827
4,3) 2.6054

the d-dimensional hyperplanes and ¢ =(2-17)v.
Thus we verify that the crossover exponent ¢ is
the same as the susceptibility exponent 7.

We emphasize that although v, 7, o, and v are
the critical exponents of the d-dimensional hyper-
planes, from universality considerations they are
also the true exponents of the original system.
The critical temperature T, (R), however, is ex-
pected to change with the interaction parameter R.

Our result easily generalizes to the situation
where an external magnetic field f is included.
Since the additional term h* § in the reduced Hamil-
tonian is uncoupled from the renormalization
scheme and § is scaled by a factor of 22--"/2 jp
each step of the iteration, we must have #;
=2(8-M1/2p  Therefore Eq. (6b) becomes

G()\lﬂi/z-ﬂ/ah, )\l/V,r’ AZ-TIR):xi G(h, T, R) . (8)
Differentiating Eq. (8) successively, we obtain

9" x ~ =,
(a R”)R=O LR (9)

where x=(82G/8h?),, ; is the magnetic susceptibility
and 7, =(k+1) Y. We have verified this rather sur-
prising result numerically for the sc, fcc, bee, and
diamond lattices for the Ising, planar, and Heisen-
berg spin systems (see Table I).° Elsewhere,® we
have generalized this approach to systems with long-
range and dipolar interactions.

The authors are indebted to K. G. Wilson and
J.  F. Nicoll for useful conversations and to G.
F. Tuthill for computational assistance.
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Other results are very similar and have been docu-
mented along with the series in National Auxiliary Pub-
lication Service (NAPS). See NAPS document No, 02496
for 120 pages of supplementary material. Order from
ASIS/NAPS c/o Microfiche Publications, 440 Park Av-
enue South, New York, N.,Y. 10016. Remit in advance
for each NAPS accession number. Make checks pay-
able to Microfiche Publications. Photocopies are
$18.50. Microfiche are $1.50. Outside of the United
States and Canada, postage is $2.00 for a photocopy or
$.50 for a fiche. The first 15 pages of NAPS document
No. 02496 contains Padé approximants to high temper-
ature series on the fcc, bee, sc, and diamond lattices,
followed by 120 pages containing the series for ¥,
X staggereas M2» and Cp, for the Hamiltonian (1) on the
fce, bee, and sc lattices. NAPS document No. 02245
contains series for X, y,, and Cy for (1) on the diamond
lattice. The series for (1) include spin dimensional-
ities n=1, 2, and 3.
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work prior to publication).



