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We introduce invariants of the scaling equation about the tricritical point. Using these invariants, a
modified version of the scaling hypothesis about the three critical lines meeting at the tricritical point is
presented. From it we demonstrate that the thermodynamic equation of state near a tricritical point
and near a critical line may be expressed as double-power scaling functions. These imply that
experimental data should collapse from a volume onto a line (i.e., by two dimensions). This behavior
is in contrast to ordinary “single-power” scaling functions, which predict data collapsing from a volume
onto a surface or from a surface onto a line (i.e., by one dimension).

I. INTRODUCTION

There have been recent experimental measure-
ments® near tricritical points? (TCPs) in metamag-
nets, NH,Cl, and 3He-*He mixtures.! These data
have been partially interpreted recently in terms
of scaling arguments in which one makes not one
but two scaling hypotheses. =5 Riedel and Wegner®
were perhaps the first authors to note that in re-
gions for which two scaling hypotheses are simul-
taneously valid, double-power-law behavior of cer-
tain functions results. In this work we present a
vaviation of scaling for tricritical points, utilizing
generalized homogeneous functions” (GHF’s) of in-
variants of the scaling equation about the tricritical
point. We obtain, in regions near a critical line
and a tricritical point, double-power scaling func-
tions which permit data to collapse from a volume
onto a line, in contrast to the behavior of single-
power scaling functions, which permit data to col-
lapse by only one dimension (e.g., from a surface

' onto a line, or a volume onto a surface).

Before we can proceed to make the scaling hypo-
thesis for a TCP, it will be necessary to determine
the relevant directions for scaling.® The three
thermodynamic fields (T, temperature; 7, order-
ing field; and g, nonordering field) near a TCP are
believed to constitute an affine space in which di-
rections may be defined by parallelism only. A
TCP is a point of intersection of three critical lines
inthis three-dimensional affine space (cf. Fig. 1).

At each point P on a critical line, three different
types of directions can be established. The first
direction, x,(P), is a direction not locally parallel
to the coexistence surface. The second, x,(P), is
locally parallel to the coexistence surface but not

‘rections attain limiting orientations.

parallel to the critical line. These are the “strong”
and “weak” directions of Griffiths and Wheeler. ® The
third direction, x3(P), is locally parallel to the
critical line.

As the point P moves toward the TCP, these di-
Since there
are three critical lines terminating at a TCP,
three “rival” sets of directions of this type exist
at the TCP. It has been shown? that if scaling holds
at a TCP, these three sets of directions are equi-
valent. Thus, we choose the relevant directions
for scaling at a TCP as x,=lim(P -~ TCP)x,(P),
wh%re P is a point on the critical line L, (see Fig.
1).

II. SCALING HYPOTHESIS FOR TCP

Having ascertained the relevant scaling direc-
tions ¥; for TCP, we now introduce a scaling pa-
rameter A (>0) and make the homogeneity hypothe-
sis 37 that the singular part of the Gibbs potential
is asymptotically a GHF,

G(\"Mxy, A'2%y, X%%5) = AG(xy, %2, %), @)

where a; are the scaling powers. Equation (1) is
equivalent to the statement that

G=F, @1: ;z, }a) (2)

is an invariant equation under the one-parameter
(1) group (G3) of transformations

G'=2G, %=\"%,, (=1, 2, 3). 3)

~ In other words, under the transformations, Eq. (2)

becomes G'=Fs(x{, x5, x3).

The group §; admits a basis set of three (;=0,
1, 2) functionally independent absolute invariants,
yi(Gl, }?1’.; }éy 53,)=yi(G9 9_("1’ 35.2’ 323)7 such that all
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FIG. 1. Schematic phase diagram showing a TCP
(at T=T;). Shaded areas are coexistence surfaces. At
a point P on Ly, a triad of directions x;(P) are shown.
This triad becomes %; at TCP.

other absolute invariants are expressible in terms
of these. One such basis set is

e ez =
0=G/% g, MEX/TP 5, 9,=7%,/%%27% . (4)

The scaling hypothesis, Eq. (1), requires Eq. (2)
to be expressible in terms of the basis set as a
“single-power” scaling function,

yO:FZ(ylr yz) ’ (5)
which states that G (and other thermodynamic func-
tions), when appropriately scaled, are functions of
the invariants (y,, y,) alone. This result allows
data near a TCP to collapse from a volume onto a
surface.
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We remark that, using Eq. (1), it is possible to
determine all exponent relations and “single-pow-
er” scaling laws for a TCP.3-®

IIIl. GEOMETRY OF SURFACES AND CURVES NEAR TCP

Since the quantities y, and y, defined in Egs. (4)
form a basis set of functionally independent abso-
lute invariants of x; under the group of transforma-
tions x;=A"*¥X;, points in the invariant (y,, v,)
plane give rise to invariant curves in the (¥, %,
¥;) space. We have seen that the scaling hypothesis
requires scaled thermodynamic functions near a
TCP to depend on y; and y, only. This implies that
each of the three critical /ines near the TCP can be
expressed as a point y;=k; in the (y,,y,) plane,
where k; are constants.

Usually, for systems exhibiting a TCP, one of
the critical lines is a planar curve lying entirely in
the (g, T) plane (e.g., L, of Fig. 1). Since x,=0,
Eq. (4) implies that L, is given by (y;, y)=(0, —%)
in the invariant plane.

Near L,, it is expected that the symmetry prop-
erty of the critical line will also influence the as-
ymptotic form of the thermodynamic functions.

The region of influence is bounded by some “cross-
over” curve, f(y1, y2)=0 [Fig. 2(a)], or

fx(xl/x3a1/a3: 9_52/9_63;2/;3) = 0, (6)
which is a conical surface surrounding L, in the
(%1, %3, x3) space [Fig. 2(b)]. Scaling cannot tell
us the actual shape of the curve in the (y;, y,)
plane, * put it does limit the shape of the conical
“crossover” surface in the (x;, x», x;) space,
since all points in the (y,, y,) plane give rise to
curves approaching the TCP along the x5 axis (cor-
responding to the minimum g,). "

IV. DOUBLE-POWER SCALING FUNCTIONS FOR L,

We now proceed to deduce the restriction on the
asymptotic form of the thermodynamic functions
near a TCP adjacent to the critical line L, .2
Along L,, the conventional scaling hypothesis is

FIG. 2. (a) Invariant (4, v,)

¥1 cone

N~ Crossover
curve

(a)

Crossover

(b)

plane. The strong and weak direc-
tions for Ly are y; and y,, and the
crossover curve is shown (Ref, 8).
(b) Principal points of interest of
(a) in the (x;, X, x3) space.



novmally stated in terms of a GHF equation

G(u™ xy, M'%xp; %)= Gy, %25 %5),

)

where p(>0) is an arbitrary parameter, a, and
ay are the scaling powers for L,, and x; is an “in-
active” variable which does not scale. _Near the
TCP, by Eq. (5) the value of y,= G/x3® changes
only if the values y, and/or y, change. It is much
better therefore to make a scaling hypothesis
about L, near the TCP using y, and y,. 3

Since the coexistence surface bounded by L, maps
into the vertical axis of the (y,, y,) plane, the di-
rection y, is strong and y, is weak. Thus, we de-
duce that the proper scaling variables for L, (near
the TCP) are

V1=91, Ve=ya+k;
these vanish at the line (y,, y,)=(0, - &).

We now hypothesize that along L, near the TCP,
Jo=yo is a GHF of (5;, ¥2):

®)

~ % . ey . -~ f~ ~
Yolu '51, 1 2F2)=uFo(1, Fa).
In other words, instead of (7) we postulate that
Yo=F3(31, ¥2)
is an invariant equation under the group (§,) of
transformations (= u¥o,91= p15,, and §i= u'25,).
By the same reasoning used for the derivation of

Eq. (5), we see that (9) requires that (10) may be
written in the form

(9)

(10)

29=Fy(zy) , (11)

where zo=7/55 2 and z,=5,/53"*2 form a set of
functionally independent absolute invariants of G,
and therefore of the variables G, ¥;, X3, X3 under
the direct-product group G,®Gs.

Reexpressing Eq. (11) in terms of the original
variables G, x;, %, and x; we obtain the “double-
power” form®

G -7 < % ) .
}%/53(}2/?6332/534_]?)1/(:3 9_6131/53(9_62/763;2/;3+k)al/az
(12)

Equation (12) predicts that near the TCP and L,,
data will collapse from a volume onto a line.
Clearly, this happens only within the crossover
cone of Eq. (6) [cf. Fig. 2(b)].

In the plane x,=0 [i.e., the (g, T) plane], Eq.
(12) requires?®

G~?31/53(,-52/y322/23 + k)l/ag , (13)
and the conical surface of Eq. (6) becomes two
crossover lines (cf. Fig. 3) %= C;%%/% or y,=C,,
where i=1,2, The crossover exponent ¢ =ay/a,,
which determines the shape of the crossover lines,
can be obtained directly from the shape of L,.3

7 DOUBLE-POWER SCALING FUNCTIONS NEAR TRICRITICAL...
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Lityz=-k

y2 =C2

FIG. 3. Figure 2(b) sliced in the %; =0 plane. The
crossover lines are labeled y,=Cy, Cy. The projection
of %, +#%/% along the T axis is T— T,(g), and (T, 2)
=(T-Ty, g—8t)-

V. EXTENSIONS AND CONCLUDING REMARKS

The entire discussion in this paper may be ex-
tended to the scaling of any thermodynamic func-
tion f. For example, for the staggered suscepti-
bility' y,,= 82G/an?< 8%G/ 0%} (or 8%G/0x%) and the
direct susceptibility x = 82G/ag?x 82G/axz (or 8%G/
0x2) of a metamagnet, the expression analogous to
Eq. (13) is

f,- - 9_6:3 (1-?&") fag (;2/23712/33 + k)(l-azi)/az , (14)
where f; =y, and fo=x. We note that Eq. (13) has
the appropriate divergence properties at the criti-
cal line and at the TCP.

Finally, we make a few remarks about the expo-
nents and directions of approach toward the TCP
and L,. Using the experimentally accessible func-
tion x4¢ as an example, we note that if we approach
the TCP along a curve x,/x. 23 = const, the scaling
exponent is —7,,0™ = (1 - 2a,)/a;. If we approach
the critical line L, along a line x;=const, the scal-
ing exponent is — 1y, = (1 - 2a,)/a, as expected. On
the other hand, if the TCP is approached along a
path outside the crossover lines, x,; scales with
an exponent — y = (1 - 2a,)/a,. Similar remarks
may be made with respect to the three-dimensional
“double-power” scaling functions of Eq. (12).

Equation (14) may be cast in “mixed-exponent”’
forms; e.g., xs¢ ~C[T —T.(g)]"st, in which x,
+k}§3r“3 has been replaced by its projection along
the T axis (Fig. 3), and C~x,"st"st’/* is the
asymptotic amplitude. Depending on the relative
magnitudes of 1, and y,,, the asymptotic amplitude
may diverge, vanish, or stay constant as the TCP
is approached within the crossover cone.
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The ideas of this work provide the basis of a

formulation of the scaling hypothesis near critical

points that are more complex than tricritical points.

For these points, the direct product of more than

two groups of scaling transformations arises natu-

rally. A detailed account of this extension will be

|~3
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published elsewhere.
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