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When investigating the dynamical properties of complex multiple-component physical and physiological
systems, it is often the case that the measurable system’s output does not directly represent the quantity we
want to probe in order to understand the underlying mechanisms. Instead, the output signal is often a linear or
nonlinear function of the quantity of interest. Here, we investigate how various linear and nonlinear transfor-
mations affect the correlation and scaling properties of a signal, using the detrended fluctuation analysissDFAd
which has been shown to accurately quantify power-law correlations in nonstationary signals. Specifically, we
study the effect of three types of transforms:sid linear syi =axi +bd, sii d nonlinear polynomialsyi =axi

kd, andsiii d
nonlinear logarithmicfyi =logsxi +Ddg filters. We compare the correlation and scaling properties of signals
before and after the transform. We find that linear filters do not change the correlation properties, while the
effect of nonlinear polynomial and logarithmic filters strongly depends onsad the strength of correlations in the
original signal,sbd the powerk of the polynomial filter, andscd the offsetD in the logarithmic filter. We further
apply the DFA method to investigate the “apparent” scaling of three analytic functions:sid exponential
fexps±x+adg, sii d logarithmicflogsx+adg, andsiii d power lawfsx+adlg, which are often encountered as trends
in physical and biological processes. While these three functions have different characteristics, we find that
there is a broad range of values for parametera common for all three functions, where the slope of the DFA
curves is identical. We further note that the DFA results obtained for a class of other analytic functions can be
reduced to these three typical cases. We systematically test the performance of the DFA method when estimat-
ing long-range power-law correlations in the output signals for different parameter values in the three types of
filters and the three analytic functions we consider.

DOI: 10.1103/PhysRevE.71.011104 PACS numberssd: 05.40.2a

I. INTRODUCTION

Many physical and biological systems under multicompo-
nent control mechanisms exhibit scale-invariant features
characterized by long-range power-law correlations in their
output. These scaling features are often difficult to quantify
due to the presence of erratic fluctuations, heterogeneity, and
nonstationarity embedded in the output signals. This problem
becomes even more difficult in certain cases:sid when we
cannot probe directly the quantity of interest in experimental
settings—i.e., the measurable output signal is a linear or non-
linear function of the quantity of interest;sii d when measur-
ing devices impose a linear or nonlinear filter on the system’s
output; siii d when we are interested not in the output signal
but in a specific component of it, which is obtained through
a nonlinear transformse.g., the magnitude or the sign of the
fluctuations in the signald; sivd when comparing the dynam-
ics of different systems by applying nonlinear transforms to
their output signals; orsvd when preprocessing the output
signal by means of linear or nonlinear filters before the actual
analysis. Thus, to understand the intrinsic dynamics of a sys-
tem, in such cases it is important to correctly analyze and
interpret the dynamical patterns in the system’s output.

Conventional two-point correlation, power spectrum, and
Hurst analysis methods are not suited for nonstationary sig-
nals, the statistical properties of which change with time
f1–3g. To address this problem, detrended fluctuation analy-
sis sDFAd method was developed to accurately quantify
long-range correlations embedded in a nonstationary time
series f4,5g. This method provides a single quantitative

parameter—the scaling exponenta—to quantify the scale-
invariant properties of a signal. One advantage of the DFA
method is that it allows the detection of long-range power-
law correlations in noisy signals with embedded polynomial
trends that can mask the true correlations in the fluctuations
of a signal. Recent comparative studies have demonstrated
that the DFA method outperforms conventional techniques in
accurately quantifying correlation properties over a wide
range of scalesf6–10g. The DFA method has been widely
applied to DNA f4,6,7,11–13g, cardiac dynamicsf14–30g,
human electroencephalographicsEEGd fluctuationsf31g, hu-
man motor activity f32g and gait f33–37g, meteorology
f38,39g, climate temperature fluctuationsf40–45g, river flow
and dischargef46,47g, electric signalsf48–50g, stellar x-ray
binary systemsf51g, neural receptors in biological systems
f52g, music f53g, and economicsf54–61g. In many of these
applications the main problem is to differentiate scaling fea-
tures in a system’s output which are inherent to the underly-
ing dynamics, from the scaling features which are an artifact
of nonstationarities or different types of transforms and fil-
ters.

In two previous studies we have examined how different
types of nonstationarities such as superposed sinusoidal and
power-law trends, random spikes, cutout segments, and
patches with different local behavior affect the long-range
correlation properties of signalsf10,62g. Here we use the
DFA method to investigate how the scaling properties of
noisy correlated signals change under linear and nonlinear
transforms. Further,sid we test to see under what types of
transformssfiltersd it is possible to derive information about
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the scaling properties of the signal of interest before the
transformation, provided we know the correlation behavior
of the transformedsfilteredd signal, andsii d we probe the
“apparent” scaling of three common transformation func-
tions after applying the DFA method—exponential, logarith-
mic, and polynomial. We also evaluate the limitations of the
DFA method under linear and nonlinear transforms. Specifi-
cally, we consider the following.

s1d Correlation properties of signals after transforms of
the typehxij⇒ hfsxidj, wherehxij is a stationary signal witha
priori known correlation properties.

sid Linear transform: hxij⇒ haxi +bj. Transforms of this
type are often encountered in physical systems. For example,
sad from the fluctuations in the acceleration of a particle
smeasurable quantityd, one can derive information about how
the forcesquantity of interestd acting on this particle changes
in time without directly measuring the force:
hastidj⇒ hFstid=mastidj; sbd in pnp transistors a difficult to
directly measure basesinputd currentIB squantity of interestd
is amplified hundreds of times, so that small fluctuations in
IB may lead to significantsand measurabled changes in the
collector soutputd signal IC smeasurable quantityd:
hICstidj⇒ hIBstid= ICstid /bj, andscd changes in the volumeV
squantity of interestd of an ideal gas can be determined from
fluctuations in the temperaturesmeasurable quantityd pro-
vided the pressure is kept constant:hTstidj⇒ hVstid
=snR/PdTstidj.

sii d Nonlinear polynomial transform: hxij⇒ haxi
kj, where

kÞ1 and takes on positive integer values. For example,sad
from fluctuations in the currentI smeasurable quantityd one
can extract information about the behavior of the power lost
as heatP squantity of interestd in a resistor:hIstidj⇒ hPstid
=RI2stidj; sbd measuring the temperatureT fluctuations of a
radiating body the Stefan’s law defines the power emitted per
unit area: hTij⇒ hei =sTi

4j. Further, linear and nonlinear
polynomial filters are also used to renormalize data series
representing an identical quantity measured in different sys-
tems before performing correlation analysis, e.g.,sid normal-
izing heart rate recordings from different subjects to zero
mean and unit standard deviationslinear filtersd or sii d ex-
tracting the absolute valuesnonlinear filterd of the heartbeat
fluctuations in datasets obtained from different subjectsf25g.

In this study we consider two examples of nonlinear poly-
nomial filters—quadratic and cubic filters—which represent
the class of polynomial filters with even and odd powers, and
we investigate how these filters change the correlation prop-
erties of signals. Since polynomial filters with even power
wipe out the sign information in a signal, we expect qua-
dratic and cubic filters to have a different effect. A recent
study by Ashkenazyet al. f25g shows that the magnitude of a
signal swithout sign informationd exhibits different correla-
tion properties from that of the original signal. Thus it is
necessary to investigate how quadratic and cubic filters
change the scaling properties of correlated signals.

siii d Logarithmic filter: hxij⇒ hlogsxi +Ddj, is also widely
used in renormalizing datasets obtained from different
sources before comparative analysis. For example, to com-
pare the dynamics of price fluctuationsXsid of different
company stocks, which may have a different average price,

one often first obtains the relative price returnsRsid
=logfXsi +1d /Xsidg before performing correlation analysis
f55,63g. It is assumed that upon taking the returns one does
not alter the information contained in the original signal. To
test this assumption we compare the correlation properties of
the signal before and after a logarithmic filter.

s2d Correlation properties of transformation functions.
When analyzing the correlation properties of a signal after a
given transform, it may be valuable to know what is the DFA
result for the transformation function itself. In addition, it is
often the case that noisy signals are superposed on trends
which can be approximated by a certain function. Previous
studies have demonstrated that the DFA result of a correlated
signal with a superposed trend is a superposition of the DFA
result for the signal and the DFA result for the analytic func-
tion representing the trendf10,62g. Here we investigate sepa-
rately the results of the DFA for three functions which are
very often encountered in physical and biological processes:
sid exponential, sii d logarithmic, andsiii d power-law.

The layout of this paper is as follows: In Sec. II, we
describe how we generate signals with desired long-range
power-law correlations and introduce the DFA method used
to quantify correlations in nonstationary signals. In Sec. III,
we compare the correlation and scaling properties of signals
before and after linear and nonlinear polynomial transforms.
In Sec. IV, we consider the effect of nonlinear logarithmic
filter on the long-range correlation properties of stationary
signals. In Sec. V, we investigate the performance of the
DFA method on three analytic functions—exponential, loga-
rithmic, and power-law—which are often encountered as
trends in physical and biological time series. We systemati-
cally examine the crossovers in the scaling behavior of cor-
related signals resulting from the transforms and trends dis-
cussed in Secs. III–V, the conditions of existence of these
crossovers, and their typical characteristics. We summarize
our findings in Sec. VI.

II. METHODS

We analyze two types of signals.
s1d Stochastic stationary signalshxij si =1,2,3, . . . ,Nmaxd

with different type of correlationssuncorrelated, correlated,
and anticorrelatedd and surrogate signals obtained fromhxij
after linear and nonlinear transforms. We use an algorithm
based on the Fourier transform to generate stationary signals
hxij with long-range power-law correlations as described in
f62,64,65g. The generated signalshxij have zero mean and
unit standard deviation.

s2d Exponential, logarithmic, and power-law functions
which often represent transformations or trends in physical
and biological data.

We use the detrended fluctuation analysis methodf6,7g to
quantify the correlation and scaling properties of these sig-
nals. The DFA method is described in detail elsewhere
f10,62g. Briefly, it involves the following steps:sid we inte-
grate the signal after subtracting the global average;sii d we
then divide the time series into boxes of lengthn and per-
form, in each box, a least-squares polynomial fit of order, to
the integrated signal to remove the local trend in each box;
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siii d in each box we calculate the root-mean-square fluctua-
tion function Fsnd quantifying the fluctuations of the inte-
grated signal along the local trend;sivd we repeat this proce-
dure for different box sizesstime scalesd n.

A power-law relation between the average root-mean-
square fluctuation functionFsnd and the box sizen indicates
the presence of scaling:Fsnd,na. The scalen for which this
scaling holds represents the length of the correlation. The
fluctuations in a signal can be characterized by the scaling
exponenta, a self-similarity parameter which quantifies the
strength of the long-range power-law correlations in the sig-
nal. If a=0.5, there is no correlation and the signal is uncor-
relatedswhite noised; if a,0.5, the signal is anticorrelated;
if a.0.5, the signal is correlated. Since we use a polynomial
fit of order,, we denote the algorithm as DFA-,. Further, we
note that for stationary signalshxij with long-range power-
law correlations, the value of the scaling exponenta is re-
lated to the exponentb in the power spectrumSsfd= f−b of
signalshxij by b=2a−1 f6g. Since the power spectrum is the
Fourier transform of the autocorrelation function, one can
find the following relationship between the autocorrelation
exponentg and the power spectrum exponentb: g=1−b
=2−2a, whereg is defined by the autocorrelation function
Cstd=t−g and should satisfy 0,g,1 f9g.

The upper threshold for the value of the scaling exponent
a is related to the order, of the DFA method:aø,+1 for
DFA-, f10g. In addition, integrating the signal before apply-
ing the DFA method will increase the value of the scaling
exponenta by 1; thus, the upper threshold will becomea
+1ø,+1 for DFA-,. Therefore, after integrating correlated
signals with the scaling exponenta.,, one needs to apply
the DFA method with an order of polynomial fit higher than
,. We also note that for anticorrelated signals, the scaling
exponent obtained from the DFA-, method overestimates the
true correlations at small scalesf10g. To avoid this problem,
one needs first to integrate the original anticorrelated signal
and then to apply the DFA-, method f10,62g. The correct
scaling exponenta can then be obtained fromFsnd /n fin-
stead ofFsndg f10,25,62g. For that reason we first integrate
and then apply the DFA method when considering anticorre-
lated signals.

III. EFFECTS OF LINEAR AND NONLINEAR
POLYNOMIAL TRANSFORMS

In this section, we study the effect of linear and nonlinear
polynomial transformssfiltersd on the scaling properties of
stationary signalshxij with long-range power-law correla-
tions. Specifically, we consider two types of nonlinear
transforms—quadratic and cubic—as an example of even
and odd polynomial filters. We generate the signalshxij with
linear fractal properties and witha priori built-in correlations
characterized by a DFA scaling exponenta f4,10,62g. We
compare how the exponenta changes after the transform.

We first test to see if these transforms affect the properties
of uncorrelated signalsswhite noised. We find that the linear,
quadratic, and cubic filters do not change the scaling proper-
ties of white noise—the curves of the detrended fluctuation
function Fsnd for the filtered signalshfsxidj collapse on the

scaling curve of the original signalhxij, and the scaling ex-
ponenta=0.5 remains unchangedfFig. 1sadg.

For signals with correlations we find that the linear and
nonlinear polynomial filters have a different effect. In par-
ticular, for both correlatedsa.0.5d and anticorrelatedsa
,0.5d signalshxij we find that the scaling properties remain
unchanged after the linear filter. In contrast, the quadratic
and cubic filters change the scaling behavior of both corre-
lated and anti-correlated signalsfFigs. 1sbd, 1scd, and 1sddg.
Specifically, foranticorrelatedsignals, we find thatsid after
the quadratic filter the scaling behavior is dramatically
changed to uncorrelatedsrandomd behavior witha=0.5 at all
scales;sii d after the cubic filter the scalingscorrelationd func-
tion Fsnd of anticorrelated signals is also changed and exhib-
its a crossover from anticorrelated behavior at small scales to
uncorrelated behavior at larger scalesfFig. 1sbdg. We note
that the quadratic filter removes the sign information in a
signal, thus completely eliminating the anticorrelations in a
signal. In contrast, the effect of the cubic filter is not as
strong as the effect of the quadratic filters, since a cubic filter
preserves the sign information and the anticorrelations at
small scales. Forcorrelatedsignals we find that after both
quadratic and cubic filters, the scaling behavior is unchanged
at small and intermediate scales. At large scales we observe a
crossover to weaker correlations which is less pronounced
when increasing the strength of the correlationsshigher val-
ues ofad in the signalhxij fFigs. 1scd and 1sddg. For signals
with very strong correlationssa.1d, we find that the scaling
behavior remains almost unchanged after nonlinear polyno-
mial filters. We also find that the quadratic filter leads to a
more pronounced crossover at large scales compared to the
cubic filter for all positively correlated signals.

IV. LOGARITHMIC FILTER

In addition to nonlinear polynomial transforms, logarith-
mic transforms are often used in preprocessing procedures
when there is a need to renormalize output signals obtained
from different systems before comparing their correlation
propertiesf55g. In this section, we investigate the effect of
logarithmic filters on the scaling properties of stationary sig-
nals with long-range power-law correlations.

We first generate stationary correlated signalshxij with a
zero mean and unit standard deviation, and witha priori
known and controlled correlation properties quantified by
DFA scaling exponenta. To ensure that all values in the
signal are positive, before the logarithmic transform, we shift
hxij⇒ hxi +Dj, whereD=−xmin+e, xmin is the minimal value
in the serieshxij and e is a positive constant. This linear
transform does not alter the correlation properties ofhxij, as
demonstrated in Sec. III, Fig. 1. Next we integrate the signal
after the logarithmic transformhlog10sxi −xmin+edj and we
perform a DFA-2 analysis.

For uncorrelatedswhite noised signals after the logarith-
mic filter, we find no change in the scaling properties and the
correlation exponent remainsa=0.5 in the entire range of
scalesfFig. 2sbdg. However, we find that the scaling proper-
ties of signals with certain degree of correlation change sig-
nificantly. Specifically, for anticorrelated signalssa,0.5d we
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observe a crossover to uncorrelatedswhite noised behavior at
large scales. This crossover becomes more pronouncedsand
shifted to smaller scalesd when increasing the strength of
anticorrelationssdecreasingad fFig. 2sbdg. This crossover be-
havior is caused by negative spikes in the signal following
the logarithmic transformfFig. 2sadg. A similar effect was
previously reported for stationary correlated signals with su-
perposed random spikesf62g. For correlated signalssa
.0.5d, we find a threshold value for the correlation exponent
ath<1.3, below which the scaling properties of the signal
remain unchanged after the logarithmic filter. Aboveath
there is a reduction in the strength of the positive correla-
tions, i.e., the value of the estimated exponent after the loga-
rithmic filter is much lower compared to the correlation ex-
ponenta in the original signalfFig. 2sddg.

Since the logarithmic filter is a nonlinear transform which
diverges for values of the signalhxi −xmin+ej close to zero,
we next test how the scaling properties of the signal depend
on the value of the offset parametere. We consider anticor-
related and correlated signals with fixed values ofa and

variede. For strongly anticorrelated signals we find that even
for large values ofe, there is a crossover to uncorrelated
behavior in the scaling curveFsnd at large scalessnote thate
is the minimal value of the signalhxi −xmin+ejd. This cross-
over shifts to smaller scales with decreasinge fFig. 3sadg.
Further, we find that for decreasinge, the scaling curvesFsnd
converge to a single curve, indicating random uncorrelated
behavior in the range of large and intermediate scales. For
anticorrelated signals witha=0.1 we find that this conver-
gence is reached fore,0.1 fFig. 3sadg. For signals with
strong positive correlationssa.athd, we also observe a
change in the scaling behavior which becomes more pro-
nounced whene decreases. However, in contrast to the anti-
correlated signals, the deviation from the expected accurate
scaling starts at intermediate scales and extends to smaller
scales with decreasinge fFig. 3sbdg. For signals with very
strong correlations—e.g.,a=2—the deviation from the ac-
curate scaling is observed only fore,0.1, while for e
.0.1, there is no effect on the scalingfFig. 3sbdg. This is in
contrast to the situation observed for signals with strong an-

FIG. 1. Effects of linear, quadratic, and cubic filters on the scaling behavior of long-range correlated stationary, Gaussian-distributed
szero mean and unit standard deviationd signalshxij: sad uncorrelated,sbd anticorrelated,scd correlated, andsdd strongly correlated. The length
of each signal isNmax=217. In our analysis we use the DFA-1 method. The curves of the detrended fluctuation functionFsnd for all signals
are vertically shifted so that they start at the same value ofFsnd at the minimal scalen. For anticorrelated signals we first integrate and then
apply the DFA-1 method to avoid overestimation of the true correlations at small scales due to limitations of the DFA methodsf10,62g and
Sec. IId. Our analysis shows that after a linear filter the scaling behavior remains unchanged. In contrast, nonlinear polynomial filters change
the scaling behavior of anticorrelated and correlated signals, leading to crossovers at large scales.
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ticorrelationssa=0.1d where the logarithmic filter alters the
scaling behavior even for much larger valuese.10 fFig.
3sadg.

Finally we study the relation between the scaling expo-
nenta of the original “input” signal and the estimated expo-
nent aout of the “output” signal after the logarithmic filter.
We find that for correlated signals within given range for the
value of the scaling exponentaP f0.4,1.3d, there is no
change in the scaling properties after the logarithmic trans-
form. However, for signals with correlation exponentsa
,0.4 anda.1.3, we find that the logarithmic transform can
dramatically change the scaling behavior and this effect also
strongly depends on the value of the offset parametere sFig.

4d. Therefore, the logarithmic filter is not recommended for
anticorrelated signals and signals with very strong positive
correlations—applying this filter will mask the true correla-
tions in the original signals.

V. RESULTS OF THE DFA FOR TRANSFORMATION
FUNCTIONS

In this section we investigate the scaling properties of
three functions:exponential, logarithmic, and power-law.
These functions are often used in signal processing as trans-
forms of various stochastic correlated signals and also appear
as trends superposed on noisy signals derived from physical

FIG. 2. Effects of the nonlinear logarithmic filterhlog10sxi

−xmin+edj on the scaling behavior of stationary correlated sig-
nals hxij, wherexmin is the minimal value in the original signal
hxij and e is a positive constant. The original signalshxij have
zero mean, unit standard deviation, and lengthNmax=218. sad
Original strongly anticorrelated signalhxij with DFA correlation
exponenta=0.1 and the corresponding signal after logarithmic
filter. sbd DFA scaling curvesFsnd for anticorrelated signals and
white noise after the logarithmic filter show a crossover to
“white noise” behaviorsi.e., slope=0.5d at large scales. To ob-
tain more accurate scaling, we first integrate the signal
hlog10sxi −xmin+edj and then apply DFA-2 methodssee Sec. IId.
scd Original strongly correlated signalhxij with the DFA corre-
lation exponenta=2 and the corresponding signal after loga-
rithmic filter. sdd DFA scaling curves for correlated signalshxij
after the logarithmic filter. We find that the logarithmic filter
does not change the correlation properties of signals with certain
positive correlationsse.g.,a=0.7 anda=1.2d, though it weak-
ens the correlations in signals with very strong positive correla-
tions se.g.,a=2d.

EFFECT OF NONLINEAR FILTERS ON DETRENDED… PHYSICAL REVIEW E 71, 011104s2005d

011104-5



and biological systems. In previous workf10,62g we have
demonstrated that the scaling behavior of a correlated signal
with a superposed trend is superposition of the scaling be-
havior of the correlated signal and the “apparent” scaling
behavior obtained from the DFA method for the analytic
function representing the trend. Therefore, understanding the
results of the DFA for certain analytic functions becomes a
necessary step to quantify the scaling behavior of system’s
outputs where correlated fluctuations are superposed with
different trends.

sid We first consider the exponential function in the form
y=expscx+ad, where 0,xø1, x= i /Nmax, i =1, . . . ,Nmax,
Nmax=217, the parameterc= ±1, and the offset parametera is
a positive constant. We show the result of the DFA method in

Fig. 5. We find that the slope of the detrended fluctuation
function Fsnd versus the scalen obtained from the DFA
method does not depend on the values of the parametersc
and a fthere is only a vertical shift inFsnd for different
values ofa andcg fFig. 5sadg. Instead, we find that the DFA
scaling exponenta depends only on the order, of polyno-
mial fit in the DFA method—a=,+1—suggesting that the
results of the DFA method do not depend on the details of the
exponential functionfFig. 5sbdg. An analytic derivation for
the fluctuation functionFsnd and the value of the scaling
exponenta obtained from DFA-1 is presented in the Appen-
dix.

sii d We next consider the performance of the DFA method
on a logarithmic function of the general form y
=log10sx+ad, where 0,xø1, x= i /Nmax, i =1, . . . ,Nmax,
Nmax=217, and the offset parametera is a positive constant.
Specifically, we investigate the dependence of the DFA scal-
ing exponenta on the value of the offset parametera. We
find that for very small values ofa, the DFA scaling expo-
nent isa=1.5. With increasinga, we observe a crossover in
Fsnd at intermediate scalesn—from a=1.5 at large scales to
a=3 at small scales for DFA-2fFig. 6sadg. For larger values
of a, we observe a scaling behavior inFsnd characterized by
a single exponenta=3 in the entire range of scalesn fFig.
6sadg. In Fig. 6sbd we present the dependence of the DFA
scaling exponenta fobtained in the fitting rangen
P s30,3000dg on the offset parametera for different DFA
order ,. We find that fora,10−5 the exponenta does not
depend on the order, of the DFA method and takes on a
single valuea=1.5. In contrast, for large values ofa.10−2,
the exponenta depends only on the order, of the DFA
method and takes on valuesa=,+1. This behavior is iden-

FIG. 3. Dependence of the effect of logarithmic filterhlog10sxi

−xmin+edj on the offset parametere. sad Detrended fluctuation func-
tion Fsnd from the DFA-2 after integration ofhlog10sxi −xmin+edj,
for an anticorrelated signal with the DFA correlation exponenta
=0.1 and varied values ofe. We find that for smaller values ofe,
there is a more pronounced crossover to uncorrelated behavior with
a=0.5. sbd Detrended fluctuation functionFsnd from the DFA-2
after integration ofhlog10sxi −xmin+edj, for a signal with strong
positive correlationssa=2d and varied values ofe. We find that
signals with strong positive correlations are less affected by the
logarithmic filter compared to the anticorrelated signals insad and
that for smaller values ofe, there is a more pronounced crossover.

FIG. 4. Relation between the scaling exponenta of the original
“input” stationary signals and the correlation exponentaout of the
signals after the logarithmic filterhlogsxi −xmin+edj, wherexmin is
the minimal value in the original signalhxij and e is a positive
constant.aout is obtained from the DFA-2 analysis after integrating
the signal hlogsxi −xmin+edj and fitting the detrended fluctuation
functionFsnd in the regionnP f30,3000g. Our results show that for
signals with a correlation exponenta outside the shaded region, the
logarithmic filter changes the scaling behaviorsaoutÞad and this
change depends on the offset parametere.
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tical with the behavior obtained for the exponential function
in Fig. 5sbd. For intermediate values ofa, we observe a
crossover in the scaling behavior of the fluctuation function
Fsnd from a=1.5 toa=,+1.

siii d Finally, we consider the general power-law function
y=sx+adl, where 0,xø1, x= i /Nmax, i =1, . . . ,Nmax, Nmax

=217, the powerl takes on real values and the offset param-
etera is a positive constant. As in the case of the logarithmic
function, we find again that the DFA scaling exponenta
depends on the value of the offset parametera fFig. 7sadg.
For certain fixed values ofl and with increasinga, we ob-
serve a gradual transition in the fluctuation functionFsnd
from a scaling behavior spanning over a broad range of
scalesn characterized by a small value of the exponenta to
a crossover at intermediate scalesn for larger values ofa,
and finally to a scaling spanning over all scalesn with expo-

nent a=3 for large values ofa for DFA-2. In a previous
studyf10g we have found a specific relationship between the
DFA exponenta and the value of the powerl for the case of
power-law function with offset parametera=0: a=,+1 for
l.,−0.5, a.l+1.5 for −1.5,l,,−0.5, a=0 for l,
−1.5, where, is the order of polynomial fit in the DFA-,
method. Our current analysis shows that this behavior is
even more complicated whena.0 fFig. 7sbdg. Specifically,
we find that for values ofa,10−5 the scaling exponenta
fobtained in the fitting rangenP s30,3000dg depends only on
the value of the powerl: a.l+1.5. In contrast, for large
values of the offset parametera.10−2, we find that the ex-
ponenta depends only on the order, of the DFA method
and takes on valuesa=,+1, which is similar to the results
obtained for the general exponential and logarithmic func-
tions in this range ofa fFigs. 5sbd and 6sbdg. For intermediate

FIG. 5. The results of the DFA method for general exponential
function: y=expscx+ad, 0,xø1, x= i /Nmax, i =1,2, . . . ,
Nmax, Nmax=217, wherec= ±1 and offseta is a positive constant.
sad Detrended fluctuation functionFsnd obtained using the DFA-2
method for different values of the offset parametera. While there is
a vertical shift inFsnd for different values ofa, all scaling curves
are characterized by an identical slopea. sbd Dependence of the
scaling exponenta on the parametersa andc. We find that for any
exponential function the scaling exponenta depends only on the
order, of the DFA method:a=,+1.

FIG. 6. The results of the DFA method for general logarithmic
function y=log10sx+ad, 0,xø1, x= i /Nmax, i =1,2, . . . ,Nmax,
Nmax=217, where offseta is a positive constant.sad Detrended fluc-
tuation functionFsnd obtained using the DFA-2 method for differ-
ent values of the offset parametera. We find that the slope of the
scaling curvesscaling exponentad depends on the value of the
offset a. sbd Dependence of the scaling exponenta on the offseta
ffitting region for a is nP s30,3000dg. We observe a dramatic
change froma=1.5 ata.0 to a=,+1 at a.0.01, where, is the
order of the DFA method.
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values ofa and for −1.5,l,,−0.5, we observe a crossover
in the scaling behavior of the fluctuation functionFsnd from
a.l+1.5 to a=,+1. Further, we find that forl.,−0.5,
the DFA-, scaling exponent remains constanta=,+1 and
does not depend on the values of the offset parametera—we
note that forl=0.41sclose tol=0.5=,−0.5 for DFA-1d the
dependence ofa on a is close to a horizontal linefFig. 7sbdg.

Analytic arguments

Our results show that for large values of the offset param-
eter a, the detrended fluctuation functionFsnd for all three
analytic functions—exponential, logarithmic, and power-
law—exhibits identical slope, where the DFA scaling expo-
nenta does not depend on the particular functional form but
only the order, of the DFA method:a=,+1 fFigs. 5sbd,

6sbd, and 7sbdg. The reason for this common behavior is that
sid for large values ofa, in each DFA box of a given lengthn,
all three functions can be expanded in converging Taylor
series, allowing for a perfect fit by a finite order polynomial
function, andsii d that, due to this convergence, the same
polynomial function can be used when shrinking the box
lengthn. In contrast, for very small values of the offset pa-
rametera, the DFA results for all three functions are dis-
tinctly different and does not depend on the order, of the
DFA method. Below we give some general analytic argu-
ments for the dependence of the DFA exponenta on the
offset parametera presented in Figs. 5–7.

sid General exponential function y=expsx+ad ,0,xø1.
First, we substitute the variablex by z=x+a: y=ez,
zP sa,1+ag. Next, we consider a DFA box starting at the
coordinatez8=s and ending atz9=s+ t, where t is propor-
tional to the number of pointsn in the box—t=s1+a
−adn/Nmax=n/Nmax. For any value ofzP ss,s+ td we can
expand the function in a Taylor series:

ez = uexpss+ z0du0,z0,t = esF1 + z0 +
z0

2

2!
+ ¯ G . s1d

Since this expansion converges, a finite polynomial func-
tion can accurately approximate the exponential function in
each DFA box. We note that the DFA-, method applied to
the above polynomial functions gives the scaling exponent
a=,+1 ssee f10gd. Thus, for any exponential function we
find that the DFA scaling does not depend on the value of the
offset parametera and depends only on the order, of the
polynomial fit in the DFA-, procedurefFig. 5sbdg.

sii d General logarithmic function y=log10sx+ad ,0,x
ø1. First, we substitute the variablex by z=x+a: y
=log10szd ,zP sa,1+ag. Next, we consider a DFA box start-
ing at the coordinatez8=s and ending atz9=s+ t, wheret is
proportional to the number of pointsn in the box—t
=n/Nmax. For any value ofzP ss,s+ td the Taylor expansion
is

log10szd = ulog10ss+ z0du0,z0,t , lns1 + z0/sd

=
z0

s
−

1

2
Sz0

s
D2

+ ¯

s− 1dm−1

m
Sz0

s
Dm

+ ¯ . s2d

This series is converging only whenz0/s,1—i.e.,z0,s.
Sincez0P s0,td, the condition for convergence in any DFA
box ss,s+ td partitioning the function is t,s. From t
=n/Nmax andsP fa,1+a− tg, we find that ifa.n/Nmax, the
logarithmic function in all DFA boxes is converging, and
thus each box can be approximated by a polynomial func-
tion, leading to scaling exponenta=,+1—depending only
on the order, of the DFA-, methodsFig. 6d.

When t.s, for certain values ofz0P s0,td, the series in
Eq. s2d is diverging. SincesP fa,1+a− tg, for s=a, t
=n/Nmax, we find that the logarithmic function is divergent
in the first DFA boxsa,a+ td, leading to deviation in the DFA
scaling for small values ofa sFig. 6d.

siii d General power-law function y=sx+adl ,xP s0,1g.
First, we substitute the variablex by z=x+a: y=zl,

FIG. 7. The results of the DFA method for general power-law
function y=sx+adl, 0,xø1, x= i /Nmax, i =1,2, . . . ,Nmax, Nmax

=217, wherel is the power and the offset parametera is a positive
constant.sad Detrended fluctuation functionFsnd obtained using the
DFA-2 method for fixedl=−0.39 and different values of the offset
parametera. We find that the slope of the scaling curvesscaling
exponentad depends on the value ofa. sbd Dependence of the
scaling exponenta on the offseta for different values of the power
l ffitting region for a is nP s30,3000dg. We observe a dramatic
change froma.l+1.5 ata.0 for different values ofl to a=,
+1 for a.10−2, where, is the order of the DFA method.
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zP sa,1+ag. Next, we consider a DFA box starting at the
coordinatez8=s and ending atz9=s+ t, where t is propor-
tional to the number of pointsn in the box—t=n/Nmax. For
any value ofzP ss,s+ td the Taylor expansion is

zl = uss+ z0dlu0,z0,t , S1 +
z0

s
Dl

= 1 +l
z0

s
+

lsl − 1d
2!

Sz0

s
D2

+ ¯ . s3d

Similar to the case of the logarithmic function, this series
is converging only whenz0/s,1. Following the same argu-
ments as for the logarithmic function we find that whena
.n/Nmax, the power-law function is converging in any DFA
box and thus can be approximated by a polynomial function,
leading to the scaling exponenta=,+1 sFig. 7d, which is
identical to the case of exponential and logarithmic function.

In contrast, fora,n/Nmax, the power-law function is di-
vergent in the first DFA boxsa,a+ td, as in the case of the
logarithmic function, leading to a deviation in the scaling of
Fsnd for small values ofa sFig. 7d. While in the case of
logarithmic function this divergence leads to a fixed scaling
exponenta=1.5, for power-law functions the value of the
scaling exponenta depends also on the powerl sFig. 7d.

We note that the above arguments can be used to estimate
the results of the DFA method for other functions. For all
functions which can be expanded in convergent Taylor ex-
pansion of a polynomial form in each DFA box partitioning
the function, the DFA method leads to identical scaling re-
sults with the exponenta=,+1, which is a notable inherent
limitation of the method. When there is divergent behavior in
some or all of the DFA boxes partitioning a function, the
DFA scaling exhibits crossover behavior to different values
of the scaling exponenta which depends on the functional
form and the specific parameters of the function.

VI. CONCLUSIONS

In summary, our study shows that linear transforms do not
change the scaling properties of a signal. However, the cor-
relation properties of a signal change after applying a poly-
nomial filter. Moreover, such change depends on the type of
correlationsspositive or anti-correlationsd in the signal, as
well as on the powersodd or evend of the polynomial filter.
For the logarithmic filter we find that the scaling behavior of
the transformed signal remains unchanged only when the
original signal satisfies certain type of correlationsscharac-
terized by scaling exponent within a given ranged. Compar-
ing the “apparent” scaling behavior of the exponential, loga-
rithmic, and power-law functions we find that within certain
range for the values of the parameters, the DFA fluctuation
function Fsnd exhibits an identical slope, and that the DFA
results of a class of other analytic functions can be reduced
to these three cases. We attribute this behavior to specific
limitations of the DFA method. Therefore, careful tests are
necessary to accurately estimate the correlation properties of
signals after nonlinear transforms.
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APPENDIX: DFA-1 IN EXPONENTIAL FUNCTIONS

We consider an exponential function of the type expscx
+ad, where the parametersc anda take on real values. The
first step of the DFA method is to integrate the signalsSec.
II d:

E
0

x

expScy

N
+ aDdy= N

ecx/N+a − ea

c
, sA1d

whereN is the length of the signal andxP s0,Ng. We divide
the variable in the exponential byN, so thatsx/Nd is in the
interval s0, 1g, as considered in Sec. V. The next step of the
DFA method is to divide the integrated signal into boxes of
lengthn. For DFA-1, the squared detrended fluctuation func-
tion in thekth box,F2sn,kd, is

F2sn,kd =
1

n
E

sk−1dn

kn FN
ecx/N+a − ea

c
− sbkx − dkdG2

dx,

sA2d

where the parametersbk anddk are obtained by a linear fit to
the integrated signal using least squares in thekth box. These
two parameters can be obtained analytically, although their
expressions are too long. To obtain the squared detrended
fluctuation function for the entire signal partitioned in non-
overlapping boxes of lengthn, we sum over all boxes and
calculate the average value:

F2snd =
1

N/no
k=1

N/n

F2sn,kd

=
1

N/no
k=1

N/n
1

n
E

sk−1dn

kn FN
ecx/N+a − ea

c
− sbkx − dkdG2

dx.

sA3d

Here, the indexk in the sum ranges from 1 toN/n sthere
areN/n boxes of lengthn in the signal of lengthNd. Using
the analytical expressions forbk and dk, F2snd can be pre-
sented analytically in the form

F2snd = gsndhsnd, sA4d

where

gsnd = h− 8Nc2n2s1 + ecn/N + e2cn/Nd + c3n3se2cn/N − 1d

+ 24N2f− secn/N − 1d2N − cn+ cne2cn/Ngj sA5d

and
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hsnd =
e2ase2c − 1dN2

2c6se2cn/N − 1dn3 . sA6d

Due to the complexity ofgsnd andhsnd, the expression of
F2snd is very complicated. However, asn,N sand usually,
n!Nd, one can expandF2snd in powers ofn to obtain

F2snd .
cse2c − 1de2a

1440N2 n4. sA7d

Finally, for the detrended fluctuation functionFsnd we
obtain

Fsnd .Îcse2c − 1d
1440

ea

N
n2. sA8d

Thus the DFA-1 scaling exponent isa=2 sin agreement
with the numerical simulation in Sec. V, Fig. 5d. In general,
we can obtain in a similar way thata=,+1, when DFA-,
with an order, of polynomial fit is used.
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