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Abstract 

Although there is a growing interest in the application of fractal analysis in neurobiology, questions about the methodology 
have restricted its wider application. In this report we discuss some of the underlying principles for fractal analysis. we propose 
the cumulative-mass method as a standard method and we extend the applicability of fractal analysis to both 2 and 3 dimensions. 
We have examined the relationship between the method of log-log Sholl analysis and fractal analysis and have found that they 
correlate well. Measurements of physiologically characterized retinal ganglion cells indicate that different cell types can have 
significantly different fractal dimensions. Such differences may allow the correlation of the physiological type of a neuron with its 
morphological fractal dimension. 
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1. Introduction 

A major goal in neurobiology has been the meaning- 
ful morphological analysis of neuronal arborization 
patterns, but only a few methods such as Shall analysis 
(Shall, 1953) have achieved wide application. Recently, 
in addition to Shall analysis, researchers have used 
fractal analysis to quantify neuronal dendritic arboriza- 
tions. Fractal analysis has also been used to describe 
how completely a neuron fills its dendritic field or the 
straightness of individual dendrites (Montague and 
Friedlander, 199 1). However, previous studies have 
used the following different methods for calculating 
the fractal dimension (d,) of a neuron: cumulative-mass 
(Caserta et al., 1990), box counting (Morigiwa et al., 
1989) and coastline measurement (Smith et al., 1989). 
The use of different methods of fractal analysis has 
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made comparison of results difficult because each 
method of determination can give slightly different 
results when used to analyze the same structure. Here 
we suggest the adoption of the cumulative-mass method 
which has been shown to be more accurate than box 
counting (Li et al., 1989; Tel et al., 1989). Furthermore, 
we have attempted to describe many of the underlying 
assumptions and limitations of these techniques when 
they are applied to biological preparations. In this 
article we try to improve on existing methods of mor- 
phological analysis in four different ways. First, we 
review the method of Shall analysis which has long 
been used for quantitative morphological studies of the 
dendritic arborizations of neurons (Shall, 1953). Sec- 
ond, we compare Shall analysis with fractal analysis 
(Caserta et al., 1990) for the characterization of neu- 
ronal arborizations. To do this, we compare the fractal 
dimension obtained using the cumulative-mass method, 
with the results of both log-log and semi-log Shall 
analysis (Shall, 1953) for the same neurons. We ask if 
one method is better than the other and if they are 
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mathematically related. Third, we extend the method 
of fractal analysis, which is traditionally a 2-dime& 
sional (2-D) method, to 3 dimensions which is more 
appropriate for most types of neurons. We did this by 
analyzing several neurons in both 2 and 3 dimensions 
using the cumulative-mass method, and comparing the 
results. Finally, previous fractal analysis studies have 
largely been performed on neurons whose physiological 

A 

properties have not been directly assessed (Montague 
and Friedlander, 1989, 1991; Morigiwa et al., 1989; 
Smith et al., 1989; Caserta et al., 1990). This left open 
the question of whether there is a correlation between 
the fractal dimension and physiology of a given cell. To 
examine this possibility, we compare the fractal dimen- 
sions of 3 physiologically distinct classes of cat retinal 
ganglion cells. 

B 

& 

Fig. 1. Line drawings of 9 of the HRP-injected, functionally identified retinal ganglion cells that we analyzed. A: 3 tonic W cells. B: 3 X cells. C: 
phasic W cells. Both the X cells (B) and tonic W cells (A), although varying in size (generally as a function of retinal location), have dendritic 
arbors that are relatively homogeneous. In contrast, phasic W cells have very heterogeneous dendritic arbors, raugjng in form from highly 
branched and compact to wide and sparse. Scale bar: 100 pm. 
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2. Materials and methods 

2.1. Methodology for fractal analysis 

The method of fractal analysis described here can 
be standardized and extended to 3 dimensions. It in- 
cludes image acquisition, cumulative-mass fractal di- 
mension calculation, and curve fitting. Image acquisi- 
tion was performed using an Applescanner (resolution 
of 637 X 825 pixels) to digitize camera lucida line draw- 
ings of horseradish peroxidase (HRP) injected retinal 

ganglion cells. This improved on our earlier work 
(Caserta et al., 1990) which used a video camera with a 
resolution of 256 x 256 pixels. Images of neurons (Fig. 
lA,B,Cl digitized by the Applescanner (Fig. 2A,D,G) 
were input into a program written in FORTRAN which 
used the cumulative-mass method to determine the 
fractal dimension. This program produced a plot of the 
natural log of the mass versus the natural log of the 
radius (Fig. 2B,E,H). The cumulative-mass fractal di- 
mension d, of the digitized patterns was determined as 
follows. First, we randomly chose a point belonging to 
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Fig. 2. Digitized cell images are shown with their corresponding 3-D and 2-D fractal analyses. In the fractal analysis graphs, natural log of the 
mass is plotted against natural log of the radius in the lower plot and the slope of the lower plot is plotted in the upper plot. a: digitized image of 
an X cell. b: 3-D fractal analysis of Fig. 2a. c: 2-D fractal analysis of Fig. 2a. d: digitized image of a tonic W cell. e: 3-D fractal analysis of Fig. 2d. 
f:  2-D fractal analysis of Fig. 2d. g: digitized image of a phasic W cell. h: 3-D fractal analysis of Fig. 2g. i: 2-D fractal analysis of Fig. Zg. In all the 
fractal analyses, the horizontal bars indicate the range over which the fractal dimension, listed above it, was calculated. 
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the digitized neuron as a ‘local origin’ (center). We 
constructed a sequence of concentric disks around this 
local origin, each with a different radius, r. For each 
disk, we counted all the pixels N(r), which were given 
by the total number of pixels belonging to the neuronal 
shape in that disk. We then calculated M(r) as the 
average of N(r) over all possible local origins within 
the radius of gyration of the object. It is necessary to 
sample all local origins to eliminate potential inaccura- 
cies which might result from some parts of the object 
possessing higher or lower fractal dimensions than 
others. The radius of gyration of an object is the square 
root of the sum of the squares of the radii from the 
center of mass to all the points on the object, divided 
by the square root of the number of points. For a 
fractal object, the mathematics predict M(r) to scale as 
M(r) N rdf (Vicsek, 1989). Thus the slope of a double 
logarithmic plot of M(r) against r gives a quantitative 
value of d,. By definition, the linear region of this plot 
is the region in which the local slope is constant as a 
function of radius. In order to determine the location 
of the linear region, we calculated the local slopes of 
the plot. The region in which the local slopes were 
found to be constant was taken as the linear region. 
The 2-point local slopes were calculated as the differ- 
ence in 1nM divided by the difference in lnr for every 
2 successive points. The &point local slopes were cal- 
culated as the slope of a least-squares line fit to every 8 
successive points. This protocol has been successfully 
applied to a wide range of fractal objects (Nittmann et 
al., 1985; Daccord et al., 1986; Daccord, 1987; Daccord 
and Lenormand, 1987). To extend these methods to 3 
dimensions, we counted all the mass (pixels) inside 
spheres of various radii instead of disks. 

For comparison, we also analyzed neurons using the 
box-counting method (Morigiwa et al., 1989) which 
covers the image with boxes of various sizes and the 
coastline method. The coastline method is equivalent 
to using the box-counting method to analyze only the 
border outline or coastline of the neuron. The coast- 
line and box-counting fractal dimensions were calcu- 
lated using the IMAGE program developed at the 
National Institutes of Health for the Macintosh com- 
puter. This program is available by anonymous FTP 
from the Internet address, ZIPPY.NIMH.NIH.GOV 
[128.231.98.32] (enter ‘anonymous’ for the user name 
and anything you like for the password.) 

When analyzing a neuron’s fractal dimension using 
box-counting or the cumulative-mass method, one must 
fit a line to the graph of mass versus radius which is 
non-linear. Some analysis programs such as the IM- 
AGE program we employed for box counting, choose 
the linear range for the user, making it impossible to 
estimate the effects of the non-linearity. In order to 
eliminate variability due to different choices of linear 
ranges for different cells (P. Meakin, personal commu- 
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Fig. 3. Graph showing the superposition of the log M versus log r 
graphs for 5 X cells. The graph demonstrates that the scaling 
behavior of M versus r is very similar for each cell. 

nication) we plotted the M(r) for cells of the same 
physiological type over one another (Fig. 3) and then 
chose a single linear range for all cells of a given type. 

2.2. 3-Dimensional fractal analysis method 

We extended the same 2-D method detailed above 
to 3 dimensions as follows. 3-D data sets of X, y, and z 
coordinates were obtained using a Eutectic Electronics 
3-D Reconstruction System (Eutectic Electronics, 
Raleigh, NC) for several of the neurons we studied. To 
check the validity of approximating these neurons as 
2-D, we calculated the fractal dimension of each of 
these neurons both as a 3-D object (using X, y, and z 
coordinates) and as a 2-D projection (using only x and 
y coordinates with the z coordinates set uniformly to 
zero). 

The same cumulative-mass algorithm was applied to 
both 2-D as well as 3-D data. The only change neces- 
sary was that for 2 dimensions the distance of a pixel 
from the center of a disk is the square root of (x2 + y2), 
but for 3 dimensions the distance of a pixel from the 
center of a sphere is the square root of (x2 + y2 + z2). 
Once this distance was calculated, the rest of the 
algorithm simply found all pixels less than a given 
radius from the center, averaged over all centers on the 
neuron and plotted mass as a function of radius. 

2.3. Comparison of fractal and Sholl analysis methods 

For Sholl analysis, images of the identified cells 
were obtained as described above. Our method of 
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Table 1 
Comparison of d,s for different physiological cell types using Z-D and 3-D fractal analysis, and Shall analysis 
- 

x cells Tonic W cells Phasic W cells 
(mean d, + SD) (mean d, + SD) (mean d,+SD) 

-.- 2-D cumulative mass 1.75 f  0.02 1.62 + 0.02 1.52 * O.IS 
3-D cumulative mass 1.80 f  0.04 1.73 I .49 :fr 0.21 
Shall analysis 1.86 + 0.15 1.70 + 0.32 1.61 i: 0.21) 

2-D box counting (coastline) 1.60 + 0.08 1.55 I 0.07 1.47 + 0.13 
2-D box counting (no coastline) 1.54 f 0.09 1.47 f  0.06 1.37 t 0.13 
3-D box counting 1.81 + 0.14 1.50 1.52 -t 0.12 
--.___ --__-. ._--- _.____ 

Shall analysis consisted of counting the intersections of 
dendrites with circles of various radii, which were 
centered on the cell body, plotting the number of 
intersections versus radius and fitting straight lines to 
these curves. We plotted the number of intersections 
as a function of radius including both the log of inter- 
sections/ linear radius and the log of intersections/ log 
of radius. From these plots we determined the slopes 
using the least-squares method. 

2.4. Physiological characterization of identified cat reti- 
nal ganglion cells 

We analyzed physiologically characterized cat reti- 
nal ganglion cells to determine if the fractal dimension 
of a cell was related to its physiology. The electrophysi- 
ological and neuroanatomical methods used for the 
recording and injection of the cells, and their qualita- 
tive morphological analysis have been described previ- 
ously (Stanford, 1987a,b). Briefly, glass micropipettes 
filled with HRP were used to record from retinal 
ganglion cells in vivo. Based on their responses to 
visual stimuli and the conduction properties of their 
axons, the neurons were classified as X cells, tonic W 
cells, or phasic W cells and subsequently injected intra- 
cellularly with HRP. After the animal was killed, the 
retinae were dissected from the sclera and pigment 
epithelium, and reacted in a solution of nickel and 
cobalt-enhanced 3,3’-diaminobenzidine to reveal the 
HRP-labeled ganglion cells (Adams, 1981). Retinal 
whole mounts were used to make line drawings of the 
recovered neurons using a x 100 oil objective (N.A. = 
1.32) and a camera lucida attachment (see Fig. 1). 

For the present study, we analyzed drawings of 20 
physiologically identified retinal ganglion cells (9 X 
cells, 6 tonic W cells, and 5 phasic W cells) using 
several methods to determine their fractal dimensions. 
We analyzed the significance of differences between 
the mean d,s for the specific cell types using Student’s 
t test, l-way ANOVA, Fisher’s PLSD and Scheffe’s 
test (Tables 4-7). 

3. Results 

3.1. Standardization of fractal analysis 

The results of 2-D cumulative-mass fractal dimen- 
sion calculations for the 3 types of retinal ganglion cells 
(X, tonic W, and phasic W) in 2 dimensions (averaging 
1.75 SD 0.02, 1.62 SD 0.02 and 1.52 SD 0.15, respec- 
tively) and 3 dimensions (averaging 1.80 SD 0.04, 1.73 
and 1.49 SD 0.21, respectively), are shown in Table 1. 
Typical cells are shown in Fig. 1 and fractal analysis 
graphs of selected neurons are shown in Fig. 2. 

In a previous report (Caserta et al., 1990), our 
algorithm for fractal dimension calculation was called 
box counting. However, box counting usually refers to 
covering an object with a minimal number of boxes, 
rather than counting the number of pixels in a disk, as 
in our previous and present algorithm. We now apply 
the more descriptive term ‘cumulative-mass method’ 
because we actually counted the number of pixels 
needed to cover the part of the image inside a disk of a 
given size. The cumulative-mass method is more accu- 
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Fig. 4. d, for each neuron analyzed by the 2-D cumulative-mass 
method in this study. 
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rate than true box counting (covering the image with 
boxes) (Tel et al., 1989; Li et al., 1989) because box- 
counting analyzes the artifactual, low d, ‘unfinished’ 
periphery as well as the high dr‘finished’ region, while 
the cumulative-mass method analyzes only the 
‘finished’ region. In the limit where the size of the 
fractal object goes to infinity, the fraction of the fractal 
object which is ‘finished’ is unity and both methods 
converge to the same answer. Further comments on 
the mathematical significance of ‘finished’ versus ‘un- 
finished’ are included in the discussion. 

3.2. 2-D versus 3-D fractal analysis 

We compared the 2-D and 3-D analyses of the same 
cells (see Table 1). We found d,s to be 4.9% higher, on 
average, for 3-D than for 2-D analysis of the same cell. 

3.3. Analysis of the fractal dimensions physiologically 
different cell types 

We analyzed 3 types of cat retinal ganglion cells (X, 
tonic W, and phasic W) using the 2-D cumulative-mass 
method (Fig. 4) and found their combined average 
fractal dimensions (1.63 SD 0.13) to be near the range 
of fractal dimensions produced by diffusion-limited-ag- 
gregation (DLA) in 2-dimensions (1.70 SD 0.10) 
(Caserta et al., 1990). Although the box-counting 
method gives lower fractal values than the cumulative- 
mass method (Table 21, the relative differences be- 
tween the cell types were consistent in that the X cells 

had the highest fractal values, the tonic W cells had 
intermediate values and the phasic W cells had the 
lowest average values. The phasic W cells also had the 
highest variability in fractal dimension using either the 
cumulative-mass or box-counting methods. 

To investigate if there were significant differences 
between the fractal dimensions of each type of gan- 
glion cell, we used the Student’s t test (Table 3) and 
analysis of variance (ANOVA) (Table 4). For X cells 
versus tonic W cells, only the 2-D cumulative-mass 
method showed a significant difference between these 
2 physiological types. For X cells versus phasic W cells, 
all the fractal methods, but not Sholl analysis, showed 
a significant difference between the 2 physiological 
types. For tonic W cells versus phasic W cells, none of 
the methods showed a significant difference between 
the 2 physiological types. Also, our results indicated 
that X cells and phasic W cells had the greatest differ- 
ences in fractal dimension (Table 1). The 2-D box- 
counting method (no coastline) seemed to be more 
useful than 2-D box counting (coastline) because it 
showed larger significant differences between X cells 
and phasic W cells (Table 3). 

We used a l-way ANOVA to investigate differences 
between means. The results showed that there were 
significant differences in the mean fractal dimension of 
X cells, tonic W cells, and phasic W cells using 2-D 
cumulative-mass, 3-D cumulative mass, and 2-D box- 
counting methods (no coastline), as shown in Table 4. 
There were no differences between the electrophysio- 
logically defined cat ganglion cells using either Sholl 

Table 2 
Values of d,s and Sholl parameters by physiological cell type 

Mean d, SD d, Range Sample size 

X cells 
2-D cumulative mass 1.75 0.02 1.72-1.77 5 
3-D cumulative mass 1.80 0.04 1.75-1.85 5 
Sholl analysis 1.86 0.15 1.64-1.99 5 
2-D box counting (coastline) 1.60 0.08 1.44-1.70 9 
2-D Box counting (no coastline) 1.54 0.09 1.34-1.62 8 
3-D box counting 1.81 0.14 1.66-1.97 5 

Tonic W cells 
2-D cumulative mass 1.62 0.02 1.58-1.64 5 
3-D cumulative mass 1.73 NC 1.73-1.73 1 
Sholl analysis 1.70 0.32 1.38-2.14 5 
2-D box counting (coastline) 1.55 0.07 1.44-1.63 6 
2-D box counting (no coastline) 1.47 0.06 1.39-1.56 5 
3-D box counting 1.50 NC 1.50-1.50 1 

Phasic W cells 
2-D cumulative mass 1.52 0.15 1.32-1.70 5 
3-D cumulative mass 1.49 0.21 1.34-1.64 2 
Shall analysis 1.62 0.20 1.44-1.95 5 
2-D box counting (coastline) 1.47 0.12 1.35-1.63 5 
2-D box counting (no coastline) 1.37 0.13 1.25-1.56 5 
3-D box counting 1.52 0.12 1.43-1.60 2 

Mean, SD and range (minimum-maximum) are shown for each type of cat retinal ganglion cell studied. All the values are rounded up to 2 

decimal digits. NC = the SDS were not computed because of the limited number of cells. 
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Table 3 Table 5 
Comparisons of different physiological cell types using different 
fractal methods and Sholl analysis using the Student’s t test (2-tailed) 

Distinguishing different physiological cell types types using different 
fractal methods and Sholl analysis using the Fisher PLSD and 
Scheffe tests Method t value d, P 

Method (X cells versus tonic W cells) 
2-D cumulative mass 9.38 
3-D cumulative mass NC 
Shall analysis 1.00 
2-D box counting (coastline) 1.18 
2-D box counting (no coastline) l.Sl 
3-D box counting NC 

Method (X cells versus phasic W cells) 
2-D cumulative mass 3.56 
3-D cumulative mass 3.68 
Shall analysis 2.08 
2-D box counting (coastline) 2.38 
2-D box counting (no coastline) 2.79 
3-D box counting 2.65 

Method (tonic W cells versus phasic W cells) 
2-D cumulative mass 1.58 
3-D cumulative mass NC 
Shall analysis 0.45 
2-D box counting (coastline) 1.36 
2-D box counting (no coastline) 1.53 
3-D box counting NC 

8 0.001 

8 NS 
13 NS 
11 NS 

8 < 0.007 
5 < 0.014 
8 NS 

12 < 0.035 
11 < 0.017 
5 < 0.046 

8 NS 

8 NS 
9 NS 
8 NS 

NC. not computed: 4fIf, degrees of freedom: ‘NS’. P > 0.200. 

analysis, 2-D box counting (with coastline) or 3-D box 
counting. The results of comparisons using the 3-D 
box-counting method were limited by lack of data in 
that there was only 1 tonic W cell and 2 phasic W cells. 

We also used the Fisher’s PLSD test and the Scheffe 
test to analyze the differences in fractal dimension of 
the different cell types (Table 5). The 2-D cumulative- 
mass method seems to be the most successful in distin- 
guishing between physiologically characterized gan- 
glion cells. To determine whether the difference be- 
tween the fractal values resulting from the use of 
different methods was significant, we used a t test for 
matched pairs (Table 6). We found that the 2-D and 
3-D cumulative-mass methods generally had signifi- 
cantly different means from each other, and the means 
with the 2-D cumulative-mass method were different 
from those of both the 2-D box-counting methods. The 
Sholl and 3-D cumulative-mass methods both had sig- 
nificant differences in means from 2-D box counting 

Table 4 
Distinguishing different physiological cell types types using different 
fractal methods and Sholl analysis using l-way ANOVA analysis 

Method F ratio ~ ~ P 

2-D cumulative mass 9.29 < 0.003 
3-D cumulative mass 6.77 0.030 
Sholl analysis 1.30 NS 
2-D box counting (coastline) 3.23 NS 
2-D box counting (no coastline) 4.70 < 0.026 
3-D box counting 4.76 NS 

NS, the method could not distinguish between different classes of 
cells ( P > 0.20). 

Method 

2-D cumulative mass 
3-D cumulative mass 
Shall analysis 
2-D box counting 

(coastline) 
2-D box counting 

(no coastline) 
3-D box counting 

X vs. tonic x vs. Tonic W vs. 
W cells phasic phasic 

w cells w cells 
_~-__- ._.---- --.- 
F F:s (see below) 

ts 

FS 

F 

‘F’ indicates significant differences at the P < 0.05 level using the 
Fisher PLSD test, and ‘S’ indicates significant differences at the 
P < 0.05 level using the Scheffi test. Tonic W and phasic W cells 
meet the Fisher PLSD test (P < 0.05). but the uncertainty in P is 
large enough for these 2 cell populations that they may only be 
different at the P = 0.08 level. 

(no coastline). There was also a significant difference 
between the 2-D box-counting methods when exam- 
ined with and without coastlines. 

Although the absolute fractai dimension of a cell 
will vary according to the method used to compute it, 
the relative morphological complexity as measured by 
the fractal dimension will remain the same, irrespective 
of method. Thus, the X cells show the highest fractal 
values, the tonic W cells the intermediate values, and 
the phasic W cells the lowest values. We used the 95% 
confidence intervals as a test to see how we might 
classify cells by their fractal dimensions (Table 7). This 
classification procedure was 100% successful for X 
cells, but classified 20% of tonic W ceils as phasic W 
cells and 40% of phasic W cells as tonic W cells. 

Table 6 
Comparison between different fractal methods and Stroll analysis 
using the Student’s t test (2-tailed) 

Method 

2-D C, versus 3-D C, 
2-D C,, versus Sholl 
2-D C, versus 2-D B, tC) 
2-D C, versus 2-D B, (no C) 
2-D C, versus 3-D B, 
3-D C, versus Shall 
3-D C, versus 2-D B, (C) 
3-D C, versus 2-D B, (no C) 
3-D C, versus 3-D B, 
Sholl versus 2-D B, (C) 
Sholl versus 2-D B, (no C) 
Sholl versus 3-D 8, 
2-D B, CC) versus 2-D B, (no C) 
2-D B, (0 versus 3-D B, 
2-D B, (no C) versus 3-D B, 

t value 

-4.05 - 
- I.16 

2.47 
6.3 

-- 0.33 
0.04 
2.5 1 
3.5 I 
0.7h 
7.02 
3.3fl 
0.3X 
5.33 

- O.?X 
-2.18 

d! 
--- 

-7 

I4 

11) 
I’) 

P 

< 0.005 
NS 

c 0.02 1 
< 1 mo 
NS 

NS 
NS 
c- (1.020 
NS 
NS 
< 0.007 
NS 
c 0.000 
NS 
NS 

C ,,,, cumulative mass; B,., box counting; C. coastline: no C, no 
coastline. 
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Table 7 
Percentage of cells classified as X, tonic W or phasic W cells using 
the cumulative-mass method for fractal analysis 

Classification X cells Tonic W cells Phasic W cells 
(d, = 1.72-1.77) (d, = 1.58-1.64) (d, = 1.32-1.70) 

tive-mass method only showed a significant correlation 
(P < 0.001) with the 2-D cumulative-mass method. 

3.5. Curve fitting 

X cells 100% 0% 0% 
Tonic W cells 0% 80% 20% 
Phasic W cells 0% 40% 60% 

Based on the indicated 95% confidence intervals for each cell type, 
d, fractal dimension. 

3.4. Comparison of results of fractal and Shall analyses 

In his anatomical studies of cortical neurons, Shall 
(1953) determined the number of intersections of den- 
dritic branches with a spherical shell per square mi- 
crometer versus the radius of the shell. He plotted the 
values either as log-log (log-log Sholl analysis) or as 
log-linear (semi-log Sholl analysis). He used the slope 
of the graph (k) to characterize the morphology of the 
neurons that he studied. Sholl used log-log analysis on 
apical dendrites and semi-log analysis on basal den- 
drites because only those analyses respectively pro- 
duced linear results. Log-log Sholl analysis correlated 
best with 3-D box-counting fractal analysis (Spearman 
rank correlation coefficient (Ztailed) r = 0.884, Table 
81, but Sholl analysis showed large fluctuations in that 
the variation from cell to cell was much larger than 
that seen with fractal analysis. We were unable to 
relate semi-log Sholl analysis to fractal analysis because 
semi-log Sholl analysis of our neurons did not yield 
straight lines. There was therefore, no single slope to 
correlate with the slopes derived from fractal analysis. 

In order to calculate d,, it is necessary to fit a 
straight line to the graph of log M versus log r. To 
minimize the errors introduced by this operation we 
used a fractal analysis method (cumulative mass) which 
did not add artifacts to the graph of log M versus log 
r. For instance, box counting can add a spurious non- 
linearity to log M versus log r (Li et al., 1989). Thus, it 
is prudent to measure d, with more than one method. 
When we chose the part of the graph to analyze, we 
excluded those parts of the graph which were larger 
than the neuron, and those which were smaller than a 
single branch and so were indicating a l-dimensional 
structure. We determined which parts of this graph to 
exclude by calculating the local slopes. Only the por- 
tion with constant local slopes was retained; and its 
slope was reported as the d, of the neuron. 

We did a correlation analysis (Table 8) to determine 
the relationships or associations between all of our 
methods for analyzing neuronal complexity to learn if 
these methods were correlated with each other. There 
was a strong correlation between the 2-D cumulative- 
mass method and both the 2-D box-counting methods 
(P < 0.01) and the 3-D cumulative-mass method (P < 
0.001). Although Sholl analysis showed a high noise 
level, it correlated well (P < 0.01) with the 3-D box- 
counting method. On the other hand, the 3-D cumula- 

Calculating the local slope increases noise. A small 
amount of noise in the data is large compared to the 
distance between points, and this introduces a large 
variation in slope. In order to reduce the noise we 
calculated both the 2-point and g-point local slopes 
(Fig. 5B,C). T wo point - local slopes are the slopes of 
lines drawn through 2 successive data points, in con- 
trast to g-point local slopes which are the slope of a 
line fit to 8 successive data points using the least- 
squares method. Note that although the g-point local 
slopes greatly reduced the noise, we lost part of the 
linear section of the graph which we sought to analyze. 
The g-point local slopes lose the linearity of the 2-point 
local slopes because sharp changes in local slope tend 
to be blunted due to averaging with their neighboring 
points and, thus, produce curves rather than straight 
line graphs with sharp inflection points. As one gets 
closer and closer to the region of low slope the averag- 
ing deflects the points further and further down (Fig. 
50. If there are regions of low slope on either side of 
the fractal region then the fractal region will be curved 
on both ends. Thus its linear appearance will be greatly 

Table 8 
Correlation analysis of different fractal methods and Sholl analysis using the Spearman rank correlation coefficient (Ztailed) 

2-D C, 3-D. C, Sholl 2-D B, (C) 2-D B, (C) 3-D B, 

2-D C, 1.000 0.978 *** (8) 0.350 (15) 0.740 ** (11) 0.796 ** (11) 0.533 (8) 
3-D C, 0.978 *** 

a3 rs5lf 
1.000 0.539 (8) 0.880 (4) 0.883 (4) 0.411 (8) 

Sholl 0.539 (8) 1.000 - 0.047 (11) 0.280 (11) 0.884 ** (8) 
2-D B, (C) 0.880 (4) - 0.047 (11) 1.000 0.864 *** (18) 0.448 (4) 
2-D B, (no C) 0.796 ** (11) 0.883 (4) 0.280 (11) 0.864 *** (18) 1.000 0.482 (4) 
3-D B, 0.533 (8) 0.411(8) 0.844 ** (8) 0.448 (4) 0.482 (4) 1.000 

C,, cumulative mass; B,, box counting; C, coastline; no C, no coastline. 
* P < 0.05, ** P < 0.01 and *** P < 0.081; number of cells in parentheses. 
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Fig. 5. Log-log plot of mass versus radius (A), and the associated 
semi-log plots of 2-point (B) and S-point (Cl local slopes of plot A. 
A: the graph of log M versus log r from which the local slope graphs 
were derived, The solid lines in B and C indicate the linear section of 
each local slope plot. Note that the d-point local slope plot (C) is 
both smoother and has a shorter linear section than the 2-point local 
4lope plot (B). 

diminished. Though g-points slopes might be useful if 
there were many points on the graph of log M versus 
log r, Fig. 5a demonstrates a situation where there are 
not enough points to use the g-point slope without 
introducing errors into the slopes.‘ 

One can calculate several least-squares lines fitting 
the log M versus log r data since there are some small 
variations in slope in different portions of the linear 
region. Even if the confidence level is 99%, the varia- 
tion among these slopes can be more than 5% since 
they are calculated from different parts of the linear 
region and, therefore, different data sets. 

4. Discussion 

4.1. Underlying basis of fractal dimension 

In this report we compare several different methods 
for calculating the fractal dimensions of neurons. Using 
these methods, we analyzed different physiologically 

characterized cell types and found some significantly 
different d,s (see Table 3). In a previous study (Caserta 
et al., 1990), we found that the fractal dimensions (d,s) 
of neurons (1.68 SD 0.15) were close to that of DLA 
(1.70 SD 0.10). However, we recognized and others 
have shown (Montague and Friedlander. 1991; Smith 
et ai., 19911 that the d,s of some neurons fall below the 
DLA range (i.e., phasic W cells: d, = 1.52 SD 0.15) and 
some are above the DLA range (i.e., X cells; ~1~ = 1.75 
SD 0.02). The importance of DLA is that it suggests an 
underlying growth process which might be one possible 
starting point for modeling neurite outgrowth and neu- 
ronal pattern formation for some cell types. If neuronal 
growth processes really have a DLA component, then 
the variation in measured d, might bc explained by 
incorporating additional features into DLA. such as 
the retraction of branches (Meakin, 19911 or a non-lin- 
ear response to growth-stimulating chemical or electri- 
cal (Caserta et al., 19921 gradients. Both modifications 
will produce a wide range of d,s. Such branch retrac- 
tion and chemotropism are known to be involved in 
neuronaf growth mechanisms (Lockerbie, 1987). How- 
ever, even if neurons had exactly the same d, as DLA, 
it would not prove that neurons grow by a DLA pro- 
cess. Two fractals can have the same d, and grow by 
different mechanisms. Even though percolation clus- 
ters and DLA grow by different rules, both have a d, 
of 2.5 when grown in a 3-D space (Meakin, 1988). 

4.2. Methodology of fractal analysi.~ 

In order to make fractal analysis more meaningful, 
we must first define ‘fractal’. A natural fractal is de- 
fined as an object in nature which grows more massive, 
as we measure the mass CM) in larger and larger fields 
of view (r), in such a way that the graph of log M 
versus log r is linear over one or more decades. The 
above definition does not include any requirement for 
a fractal growth rule. For instance, DLA, a very well- 
studied natural fractal, has no fractal growth rule, but 
on the contrary grows according to a non-scale-de- 
pendent, non-recursive rule (i.e., growth velocity is 
proportional to the chemical concentration on the 
boundary of the DLA cluster). Thus, though neurons 
seem to be fractal, no fractal growth rule is required in 
any theory of their morphological development. In 
contrast, a mathematical fractal is a theoretical ab- 
straction containing an infinite range of feature sizes 
and displaying log M versus log r linearity over an 
infinite number of decades. While both natural and 
mathematical fractals are linear in log M versus log r. 
the short interval of linearity in natural fractals pre- 
sents additional difficulties in determining linearity and 
fractality. By contrast, mathematical fractais can be 
realized on a computer with an extremely long linear 
interval. 
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For any natural fractal which is fractal over at least 
1 decade, there are many methods available for count- 
ing the mass of the object or measuring its coastline. 
Three methods of measuring neuronal coastline length 
were compared by Smith et al. (1989). The methods 
were caliper, disk, and grid. Caliper measures the 
coastline with straight lines. Disk measures the coast- 
line with disks. Grid measures the coastline by placing 
grids of different grid sizes on the coastline and count- 
ing the number of non-empty boxes (which is the same 
as box counting the coastline). Measuring the coast- 
lines of neurons and other objects with calipers of 
various sized openings was found to produce less linear 
graphs by Smith et al. (1989) than the other methods. 
By analyzing only the coastline or perimeter of a neu- 
ron, instead of the space inside the coastline we ob- 
tained a higher fractal dimension. This was due to the 
fact that the coastline of a neurite is thicker than the 
original neurite and looks 2-D on small length scales, 
as opposed to the original neurite which is one dimen- 
sional on small length scales. Thus, the influence of the 
coastline is to increase the value obtained for d, which 
is calculated over a range of length scales. 

Mass methods, such as the cumulative-mass method, 
have the advantage over coastline methods in that they 
measure the d, of the neuron directly, rather than 
measuring the d, of its coastline and then trying to 
relate it to the d, of the neuron. Morigiwa et al. (1989) 
and Montague and Friedlander (1989) used mass-box 
counting to study the log M versus log r relationship 
of neurons. In the present report, we found the d,s of 
neurons calculated by box counting to be lower than 
that by the cumulative-mass method. This is true also 
for DLA where box counting produced a fractal di- 
mension of 1.57 SD 0.05 (Li et al., 19891, as opposed to 
the well established value of 1.71 SD 0.02 (Meakin, 
1983). The cumulative-mass method has the disadvan- 
tage of requiring a computer with the floating-point 
instruction speed of a mainframe as opposed to box 
counting, which runs acceptably fast on a PC. How- 
ever, the error due to the small finite size of objects is 
much less for the cumulative-mass method than for box 
counting. Similarly, the significance of differences in 
d,s for different physiological types of neurons is higher 
using the cumulative-mass method than the signifi- 
cance using box counting in our study. 

When using the cumulative-mass method, it is nec- 
essary to choose a radius within which the centers of 
the cumulative masses will be placed. For an object 
like a DLA cluster, these centers are usually taken 
within the radius of gyration of the DLA cluster. The 
radius of gyration of an object is the square root of the 
sum of the squares of the radii from the center of mass 
to all the points on the object, divided by the square 
root of the number of points. This choice of centers 
specifically excludes the periphery of the object in 

order not to be influenced by the low d, of the ‘un- 
finished’ outer regions (A. Coniglio, personal commu- 
nication). However, it is possible to take the cumulative 
mass centers at all points on the structure, sampling 
both the center and the periphery (Meakin, 1992). The 
choice of whether to include the periphery must be 
based on whether the periphery is judged to be a 
‘finished’ part of the whole fractal. ‘Unfinished’ con- 
notes the idea that the outer regions of a fractal may 
have a different fractal dimension than the inner re- 
gion. Therefore, in the present case, we chose centers 
within the radius of gyration because the branching 
patterns of the neurons we analyzed were not ‘finished’. 
Although the neurons were adult and probably not 
actively growing, their outer branches, in terms of 
fractal analysis, were not ‘finished’. To be ‘finished’, in 
terms of fractal analysis, the outer branches would 
have to have the same fractal dimension as the inner 
branches. The inclusion of the outer branches incor- 
rectly lowers the d, of the neuron and produces errors 
due to the large variability of the contribution of the 
outer branches. Natural fractals like neurons are often 
not ‘finished’, as opposed to abstract, mathematical 
fractals which are forced to be ‘finished’, by definition 
(i.e., all parts of the fractal are constructed with the 
same fractal dimension). 

When performing fractal analysis, it is good to note 
that different methods work best for different fractals. 
Cumulative mass works well for DLA and objects that 
grow radially from their center but not well for fractals 
like the Sierpinski carpet which has no obvious growth 
center. Box counting works well for the Sierpinski 
carpet but not for DLA. Thus, even though a method 
works well with a fractal of known d,, it may not work 
for all fractals. It is very important to take into account 
the contribution of the periphery of the object under 
analysis. The periphery may have a different d, than 
the rest of the object (A. Coniglio, personal communi- 
cation). This part of the object must be ignored to 
calculate the correct d,. This is particularly important 
if the object has few length scales in it because the 
periphery’s contribution would dominate. We used a 
cumulative-mass method which ignores the periphery 
of the neuron and so removes any errors associated 
with it. Our box-counting methods did not remove the 
periphery. Thus, we believe that the different d,s ob- 
tained using the cumulative-mass and box-counting 
methods is partially due to the different treatments of 
the periphery. 

4.3. Analysis of characterized cells 

With our statistical analysis of groups of cells of 
different physiological types, the significance of differ- 
ences in d, for different physiological types of cells can 
be determined. The methods of analysis used here 
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demonstrated that the 3 types of cat retinal ganglion 
ceils we analyzed differed in their fractai dimensions. 
This lends support to the notion that these cell types 
do, in fact, represent populations of neurons that can 
be discriminated from one another. Stanford (1987a) 
presented data that strongly suggested that cat retinal 
W cells can be subdivided into at least 2 subtypes 
based on both morphological and physiological criteria. 
The differences in the fractal dimensions found here 
for phasic and tonic W cells supports this suggestion. 
In the present analysis, we found that the fractal di- 
mensions of tonic W cells had values more similar to 
that of X cells. These data, and the similarities in the 
soma sizes of tonic W cells and X cells previously 
reported (Stanford, 1987a), indicate that, at least mor- 
phologically, tonic W cells are more similar to X cells 
than to the phasic W cells. The phasic W cells analyzed 
here had the most variability in fractal dimensions (Fig. 
4), indicating that these cat retinal ganglion cells are 
the most heterogeneous. It is possible that some of 
these morphologically diverse phasic W cells may rep- 
resent the ganglion cells in the cat retina that have 
been reported to have unusual response features such 
as suppressed by contrast cells, local edge detectors, 
etc. (Cleland and Levick, 1974; Stone and Fukuda, 
1974). Differences in the fractal dimensions of retinal 
ganglion cells have been previously reported by Mo- 
rigiwa et al. (1989), who described significant differ- 
ences in the fractal dimensions of ON- and OFF-type 
ganglion cells in the cat retina. 

The 2-D cumulative-mass method was the best 
method for differentiating between X cells and tonic W 
cells, and X cells and phasic W cells in comparison 
with either Shall analysis or 2-D box counting of the 
neurons with or without inclusion of the coastline 
(Table 3). More study is required to precisely deter- 
mine the reason for the difference in performance of 
these 4 methods. 

4.4. Comparison of fractal and Sholl analysis results 

The 2 different methods of Sholl analysis, log-log 
and semi-log, have been applied previously without a 
clear basis as to which to choose (Lima and Coimbra, 
1989). Of the 2 methods, only log-log Sholl analysis 
correlates with fractal analysis for the cells that we 
analyzed. We correlated the outputs of all our methods 
(Table 8) and found that the 3-D box counting fractal 
analysis correlated best with log-log Sholl analysis 
(Spearman rank correlation coefficient (Ztailed) r = 
0.884). One aspect where the methods differed was 
that Shall analysis used only one center from which to 
calculate distances to pixels, while fractal analysis used 
all points on the neuron within the radius of gyration 
as centers. By examining all points, fractal analysis 
(cumulative-mass method) can average out noise, which 

produces a more accurate representation of the neu- 
ron. However, Shot1 analysis is centered on only one 
point on the neuron’s structure, and therefore, random 
noise is introduced based on which part of the random 
structure is located at the center. Sholl analysis had the 
highest noise level and because of this high noise level 
it is perhaps the less useful method. 

4.5. 3-Dimensional analysis 

Most previous work has been limited to 2-D fractal 
analysis of cells whose physiological type was not di- 
rectly determined (Montague and Friedlander, 1989, 
1991) or cells which were characterized physiologically 
on the basis of their anatomy (Morigiwa et al., 1989). 
Ours is the first complete 2-D and 3-D analysis of 
physiologically characterized neurons. We found 3-D 
analysis to be possible although the retinal ganglion 
cells we anaiyzed are somewhat unique in that they are 
relatively 2-D. This is due to the fact that all retinal 
ganglion cells in the cat receive their synaptic input in 
the inner plexiform layer and are constrained to have 
their dendrites ramify in that layer of the retina. How- 
ever, the fact that the d,s in 3 dimensions were higher 
is consistent with the higher theoretical values of known 
fractals in 3 versus 2 dimensions (DLA, 3-D d, = 2.5, 
2-D d, = 1.71) (Meakin, 1988). It is likely that neurons 
which arborize more completely in 3 dimensions will 
have d,s closer to 2.5. Since 3-D analysis showed 
significant differences in d, for these relatively 2-D 
cells, 3-D analysis might be even more revealing if 
applied to more truly 3-D cells. 

In conclusion, there are many methods for fractal 
analysis and no one method is superior for analysis of 
all fractal objects. When choosing a method, one must 
consider that the best method may be one (e.g. cumu- 
lative mass) that works well on known natural fractals 
like DLA that have similar properties to neurons, such 
as radial growth from the center and an ‘unfinished’ 
periphery. Methods (e.g., box counting) which work 
well on mathematical fractals like the Sierpinski carpet 
may not work as well for natural fractals. Shall analysis 
is similar to fractal analysis, but usually is subject to 
relatively more random noise. The three types of cat 
retinal ganglion cells that we analyzed using the 2-D 
cumulative-mass method differed in their fractal di- 
mensions, lending support to the idea that these types 
of cells represent populations of cells which can be 
discriminated from one another on the basis of their 
morphological, as well as physiological characteristics. 
By calculating statistics comparing groups of cells of 
different physiological types, we were able to deter- 
mine the significance of these differences in fractat 
dimension. We extended sand box analysis to 3 dimen- 
sions and demonstrated its ability to find significant 
differences between the average fractal dimensions of 
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these cell types. Therefore, we believe fractal dimen- 
sion can be a useful parameter for the morphometric 
characterization of the apparent complexity of the den- 
dritic arborizations of neurons in 2 and 3 dimensions. 
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