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• Precisely predicting outbreak threshold of correlated networks is of great Importance.
• Four theoretical methods are comparative to predicting outbreak threshold.
• The outbreak threshold in SIR model is affected by topological structure of correlated networks.
• The simulations based on SIR model evaluate the fitness of four theoretical methods.
• The CM and DMP methods perform better to predicting outbreak threshold of correlated networks.
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a b s t r a c t

Being able to theoretically predict the outbreak threshold of an epidemic is essential in dis-
ease control. Real-world correlated networks are ubiquitous and their topological structure
strongly affects the prediction accuracy of present-day theoretical methods. Quantifying
their accuracy and fitness in predicting outbreak thresholds of correlated networks is thus
essential. We use a susceptible–infected–removed (SIR) model to examine four widely-
used theoretical methods – the heterogeneous mean-field (HMF ), quenched mean-field
(QMF ), dynamical message passing (DMP), and connectivity matrix (CM) methods – to
predict the outbreak threshold of a correlated network. The potential topological structure
of correlated network impacts onprediction accuracy of these fourmethods.Weemphasize
that the quantitative changes of degree correlation, degree distribution exponent and
network size strongly affect the outbreak of SIR spreading dynamics, and compare the
simulation results with the theoretical ones obtained from these four methods. The ex-
tensive experiments in synthetic networks show that (a) the increasing degree correlation
coefficients reduce outbreak threshold and suppress outbreak size; (b) the increasing
degree distribution exponents raise outbreak threshold but suppress outbreak size; (c) the
increasing network sizes decrease outbreak threshold but do not affect outbreak size; (d)
as for four theoretical methods, CM and DMP are more likely to precisely predict outbreak
threshold because they to some extent incorporate network topology with dynamical
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correlations. The experimental results in 50 real-world networks also prove the above
conclusions.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Many real-world networks oppose a ubiquitous fat-tailed degree distribution (i.e., scale-free characteristic) [1] and
diverse degree correlations [2]. Degree correlations characterize the relationship between the degrees of two connected
nodes of the network, and divide the network structure into assortative (positive degree correlation) and disassortative
mixing (negative degree correlation) patterns. Epidemic dynamics in complex networks are strongly affected by network
topological structure [3–14]. Researchers have found that the network structure, such as the scale-free characteristic and
degree correlation has an important influence on the spreading of disease [15–25]. For example, they found the effect
of disassortative mixing on epidemic spreading [17,18,26]. That is, the spreading process would slow down if the highly
connected nodes (hubs) are more likely to transmit the infection to nodes with low degree [22]. Aim to epidemic dynamics
in real-world correlated network, it is of great importance to uncover what affects the outbreak threshold and choose a
proper theoretical method to precisely predict outbreak thresholds of these (real-world) correlated networks.

Researchers also have developed many theoretical ways of predicting outbreak thresholds in respect to epidemic
spreading models, e.g. susceptible–infected (SI) [23,24], susceptible–infected–susceptible (SIS) [15,16] and susceptible–
infected–recovered (SIR) [27]. There are four well-known theoretical methods, each of which applies the topological
information differently. The first is the heterogeneous mean-field method (HMF ) [15,27] that takes into account the degree
distribution. The second is the quenched mean-field (QMF ) method based on the adjacent matrix of the network [28]. The
third is the dynamicalmessage passing (DMP)method [29] that describes network topology in terms of the non-backtracking
matrix. The last is the connectivity matrix (CM) method [19] that describes network topology in terms of its connectivity
matrix. Because these four methods typically predict different outbreak thresholds for the same (correlated) network, their
prediction accuracy is difficult to determine, and how well present theoretical methods predict outbreak thresholds of
correlated networks remains unknown.

Recently Wang et al. [30] empirically found that the degree correlations of real world networks affect the outbreak
thresholds of SIR spreading dynamics and the prediction accuracy of HMF , QMF and DMP . However, it does not carry out
in-depth analysis on that the alterable topological structures of correlated networks relate to the prediction accuracy of
outbreak threshold of SIR spreading dynamics. In this paper, we systematically investigate that how predicting outbreak
threshold of correlated network is affected by the quantitative changes of degree correlation, degree distribution exponent
and network size, and find the fitness of present theoretical methods to predict outbreak threshold of correlated network.
Note that we also introduce CM to compare with other three present theoretical methods in [30]. Through the extensive
experiments in synthetic networks, we show that the outbreak threshold of SIR spreading dynamics reduces with the
increasing degree correlation coefficient and network size, but raises with the increasing degree distribution exponent.
Furthermore, comparing the simulation results of outbreak thresholds with theoretical ones estimated from these four
methods,we find thatCM andDMP havemore fitness to precisely predict outbreak thresholds of diverse correlatednetworks.
The above-mentioned results in synthetic networks are proved by empirically findings in 50 real-world networks. Thus,
this work provides us to deeply understand the effects of topological structure of correlated networks on precisely predict
outbreak threshold of SIR spreading dynamics and find the fitness of the present theoretical methods.

2. Models and methods

2.1. Correlated network model

The correlated network model is able to adjust the degree correlation coefficient r , the degree distribution exponent � ,
and the sizeN . We use themethod in [31] to construct suchmodel. Firstly, the uncorrelated configurationmodel [32] is used
to create a network with power-law degree distribution. The degrees of all nodes are limited to a interval (kmin,

p
N). Then,

we use the biased degree-preserving edge rewiring method to adjust the degree correlation coefficient [33]. The steps are
as followed:

(1) Randomly choose two edges and disconnect them.
(2) Then, sort the degrees of the four nodes that associatewith the two chosen edges. To generate assortative (dissortaive)

networks, the nodes with highest degree should be connected to the node with second highest (lowest) degree, and also
connect the remaining two nodes. If one or both of the new edges are already exist in the network, the step should be
discarded and randomly choose another two new edges.

(3) Repeat the steps (1) and (2) until the degree correlation coefficient reaches the target value.
According to [2,34], the degree correlation coefficient is defined as

r =
P

ij(Aij � kikj
2M )kikj

P
ij(ki�ij �

kikj
2M )kikj

. (1)
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where A is the adjacency matrix of the network, if node i connects to node j, Aij = 1; otherwise, Aij = 0, ki represents the
degree of the node i,m is the total number of edges and � is the Kronecker delta function (which is 1 if i = j and 0 otherwise).
The degree correlation is absent in the network when r = 0, while r > 0 and r < 0 indicate positive and negative degree
correlation, respectively.

2.2. Epidemic model and theoretical methods

The epidemic spreading dynamics in correlated networks is based SIR model where the nodes are divided into three
types, the susceptible, the infected, and the recovered. In SIR model, the infected nodes could transmit the disease to their
susceptible neighbors with rate � , and turn to recovery state with rate µ. In this case, there exists a critical value (or the
effective epidemic threshold �c) of the effective transmission rate � = �/µ, above which the final fraction of recovered
nodes is finite [5,6].

The four prevalent theoretical methods, HMF , QMF , DMP and CM are used to predict the outbreak thresholds of SIR
spreading dynamics in correlated networks. In this subsection we will briefly introduce these methods as follows.

HMF predicts the epidemic threshold only using the degree distribution, and can be expressed as

�HMF
c = hki

hk2i � hki , (2)

where hki and hk2i represent the first and second moments of degree distribution P(k) [34], respectively. For a network
with power-law degree distribution P(k) ⇠ k�� , the outbreak threshold �HMF

c predicted by HMF is vanishing when �  3,
otherwise it is finitewhen � > 3 [6]. � represents the degree distribution exponent of network [3,34]. AlthoughHMF is valid
for uncorrelated network, it may lost the prediction accuracy for correlated networks because of the degree correlations and
dynamic correlations among the states of neighbors [35,36].

QMF , differing from the HMF , takes into account the adjacent matrix A of the network [37,38]. It uses the leading
eigenvalue ⇤A of the adjacent matrix to predict the outbreak threshold,

�QMF
c = 1

⇤A
. (3)

QMF to some extent does not capture the degree correlations and the dynamical correlations among the neighbors and
sometimes fails to predict the outbreak threshold of pow-law distributed networks with � > 3 [36].

DMP is recently developed to study the SIR model in finite-size networks [29,39,40]. It determines the complete network
structure by using the non-backtracking matrix, and thus captures some of dynamical correlations among the states of
neighbors. Especially for large sparse networks, the non-backtracking matrix more precisely represents the complete
network structure, and it is defined as

M =
✓
A 1 � D
1 0

◆
, (4)

where 1 is a N ⇥ N unit matrix, D is the diagonal matrix with the vertex degrees along its diagonal, and 0 is a N ⇥ N null
matrix. Thus, DMP is able to precisely predict the outbreak threshold via the leading eigenvalue ⇤M of the non-backtracking
matrix [41–44], such like

�DMP
c = 1

⇤M
. (5)

The last theoretical method, CM , considers the degree correlations among the nodes and determines the network
structure by using connectivity matrix (CM) CMkk0 = (k � 1)P(k0|k) [20]. P(k0|k) denotes the probability that a vertex of
degree k is pointing to a vertex with degree k0. The outbreak threshold predicted by CM is

�CM
c = 1

⇤m
, (6)

where ⇤m is the largest eigenvalue of CM. As CM takes into account the degree correlations and dynamical correlations
among the states of neighbors, it can precisely predict the outbreak threshold of correlated network.

After the brief introductions of four theoretical methods, we simply discuss and compare them when the network is
uncorrelated and has a power-law degree distribution and epidemic spreading dynamics is based on SIR model. Firstly,
according to [45], QMF can predict the outbreak threshold �QMF

c by the maximum degree kmax, �QMF
c / 1/

p
kmax when

� > 2.5, and when � < 2.5, �QMF
c / hki/hk2i. Then, for CM , we can easily obtain that CMkk0 has an unique eigenvalue

⇤CM 0
m = (hk2i � hki)/hki [20], and �CM

c = hki/(hk2i � hki). And, it is same to �HMF
c and �DMP

c [43]. Obviously, HMF , DMP
and CM are equal to predict the outbreak threshold when the network is uncorrelated, but the prediction accuracy of these
methods is still unknown when the network is correlated.
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Fig. 1. Overview of SIR spreading dynamics with different degree correlation coefficient r . (a) The outbreak size R1 vs. � for r = 0.4 (magenta diamonds),
0.1 (green down-triangles), 0 (blue up-triangles), �0.1 (red circles) and �0.2 (black squares). (b) Variability � vs. � for r = 0.4 (magenta diamonds), 0.1
(green down-triangles), 0 (blue up-triangles), �0.1 (red circles) and �0.2 (black squares). The degree distribution exponent and network size are set as
� = 3.0 and N = 10,000, respectively. The results show that the outbreak thresholds reduce with the increasing degree correlations, as well as the final
outbreak size.

Fig. 2. Compare the prediction accuracy of outbreak thresholds between four theoretical methods and numerical prediction in 15 synthetic networks.
The relation of theoretical predictions �CM

c (black squares), �HMF
c (red circles), �QMF

c (blue up-triangles) and �DMP
c (green down-triangles) versus numerical

prediction �c . We set the degree distribution exponent � = 2.2, 3.0, 4.0, and for each � , vary the degree correlation coefficient r = �0.2, �0.1, 0, 0.1, 0.2.
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Fig. 3. The influence of degree correlation on the absolute errors and relative errors of four theoretical methods. The first column, (a) and (c) describe
the absolute errors and relative errors of theoretical outbreak threshold of four theoretical methods in respect to simulating outbreak threshold. The
corresponding average absolute errors (b) and relative errors (d) are shown in the second column. These results are in term of degree correlation coefficient
r .We can find that the entirely optimal rank of four theoreticalmethods according to the average (relative) errors,DMP > CM > HMF > QMF . Nevertheless,
with the increasing degree correlation coefficients (especial for positive values), QMF tends to work better (reduce the average absolute and relative errors)
in contrary to other three methods.

3. Simulation results

3.1. Results in synthetic networks

We firstly test the effect of the degree correlations on epidemic threshold and the four theoretical methods, as we
known that the degree correlations of the network have a significant effect on the network structure and epidemic
threshold [21,22,46]. In the simulations, we set the network size is N = 10,000, and consider the networks with degree
distribution P(k) ⇠ k�� . Also, the minimal and themaximum degrees are set to be kmin = 3 and kmax =

p
N , respectively. To

initiate an infection process, we randomly choose five infected nodes as seeds, while the other nodes are in the susceptible
state. Without loss of generality, we set the recovery probability µ = 1, and thus the final fraction of recovery nodes R(1)
and the critical epidemic threshold �c is equal to the outbreak size and the outbreak threshold (�c), respectively. The degree
correlations is tuned by using the biased degree-preserving edge rewiring procedure as mentioned in Section 2.1.

The variability � is used to numerically determine the epidemic threshold [47–49], which is defined as

� =
p

h⇢2i � h⇢i2
h⇢i , (7)

where ⇢ denotes the epidemic outbreak size R(1). To obtain a reliable value of �, we repeat at least 3 ⇥ 103 independent
dynamic realizations on a fixed correlated network and calculate average � for each value of unit infection probability � .
The peak of � correspond to the outbreak threshold �c of SIR spreading dynamics in correlated network.

Fig. 1 shows that with the network size N = 10,000 and the degree distribution exponent � = 3.0, the outbreak
threshold and size of the disease both reducewith the increasing degree correlation coefficients.When the degree correlation
coefficient is large (e.g., r = 0.4), the nodes with high degree preferably connect to highly connected nodes. Thus, it is
easier to form a bigger rich-club structure that makes the spread of disease becomemore favorable and reduce the outbreak
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Fig. 4. Overview of SIR spreading dynamics with different degree distribution exponent � . (a) The outbreak size R1 vs. � for � = 2.2 (black squares), 3.0
(red diamonds) and 4.0 (blue up-triangles). (b) Variability � vs. � for � = 2.2 (black squares), 3.0 (red diamonds) and 4.0 (blue up-triangles). The degree
correlation coefficient and size of these networks is set r = 0.2 and N = 10,000, respectively. The results show that the outbreak thresholds are increased
and the outbreak sizes are suppressed when the network becomes less heterogeneous.

threshold. On the contrary, when the degree correlation coefficient is decreasing (e.g. r < 0), highly connected nodes
preferably connect to nodes with low degree that makes the network be a star-like structure, which hinders the further
spread of disease. On the other hand, with the increasing degree correlation coefficients, the outbreak size R(1) becomes
smaller at a large � (� �c), but a litter larger at a small at small � (> �c). This result is easily explained as follows: The
increasing degree correlation coefficients bring the bigger size of rich-club, and for small � , the existence of the bigger rich-
club makes the disease spread more easily, leading to larger R(1), while for large � , the disease is more likely to spread
between the highly connected nodes and its highly connected neighbors, thus failing to infect a large number of nodes with
small degrees and leading to smaller R(1).

We further study the influence of degree correlation on the prediction accuracy of the mentioned-above theoretical
methods. When the network size is set as N = 10,000, 15 synthetic networks with power-law degree distribution are
constructed by changing degree correlation coefficients r = �0.2, �0.1, 0, 0.1, 0.2 and degree distribution exponents
� = 2.2, 3.0, 4.0. Based on the synthetic networks, we perform the simulations of SIR spreading dynamics and apply four
theoretical methods to estimate the corresponding outbreak thresholds. Fig. 2 shows the relation between numerical and
theoretical results. Obviously, DMP and CM predict the outbreak thresholds more precisely, because they both take into
account more information of network structure. And, HMF only using the degree distribution behaves well in the case of
r = 0 because it is equal to DMP and CM (see the introductions and discussions of theoretical methods in Section 2.2). Note
thatQMF only considers the quenching structure of the networks, thus fails tomore precisely predict the outbreak threshold
of all synthetic networks than other three methods.

In further, in term of degree correlation coefficients, we specially compare the prediction accuracy of four theoretical
methods through computing the average absolute error �(�u

c ) = |�u
c � �c | and the average relative error �0(�u

c ) =
|�u

c � �c |/�c (u 2 {HMF ,QMF ,DMP, CM}). Fig. 3(b) and (d) show the entirely optimal orders of four theoretical methods
according to the average (relative) errors, DMP > CM > HMF > QMF . Nevertheless, with the increasing degree correlation
coefficients (especial for positive values), QMF tends to work better (reduce the average absolute and relative errors) in
contrary to other three methods.

As we know that the degree distribution exponents also affect the outbreak thresholds of SIR spreading dynamics in
correlated networks, a comparison of four theoretical methods are performed in term of degree distribution exponents.
According to the simulations in synthetic networks,we firstly show the outbreak size R(1) and the variability� as a function
of � in Fig. 4. Specifically, for large � , R(1) reduces and �c increases with the increasing � . This result can be qualitatively
explained that when � increases, the networks become less heterogeneous and thus lack of highly connected nodes that
suppress the outbreak of disease spreading and weaken R(1) for large � .

In further, in term of degree distribution exponent � , we show in Fig. 5 the (average) absolute and relative errors of
�HMF
c , �QMF

c , �DMP
c , and �CM

c in respect to �c . Specifically, in Fig. 5(b) and (d), we can see that when the network become less
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Fig. 5. The influence of degree distribution exponents on the absolute errors and relative errors of the four theoretical methods. In the first column, (a) and
(c) are the absolute errors and relative errors of theoretical outbreak thresholds of four theoretical methods in respect to simulating outbreak thresholds.
The corresponding average absolute errors (b) and relative errors (d) are shown in the second column. These results are in term of degree distribution
exponents, and confirm that the optimal rank of four theoretical methods is DMP > CM > HMF > QMF . Furthermore, QMF are very sensitive to larger
degree distribution exponent.

heterogeneous (i.e., larger � ) �DMP
c robustly approaches to �c in comparison of other three methods, and for HMF and QMF

the (average) absolute and relative errors obviously increase. These results confirm that DMP is most precise for predicting
epidemic threshold of SIR spreading dynamics in correlated networks with power-law degree distribution.

Finally, we also investigate the influence of network size on the prediction accuracy of SIR spreading dynamics in
correlated networks. Through presetting r = 0.1 and � = 2.2, we increase the sizes of correlated networks with power-law
degree distribution from 1000 to 16,000 (the increment step is 2n). Based on the SIR spreading dynamics in these synthetic
networks, we perform the simulations and the theoretical analysis on prediction accuracy of outbreak thresholds. Fig. 6
shows that the outbreak thresholds reduce with the increasing network size and the outbreak sizes R(1) for large � are
almost independent of the network size. According to network model in Section 2.1, the large-degree (or highly connected)
nodes increases with the network size, which promotes the spreading of disease.

Like above-mentioned analysis of degree correlation and degree distribution exponent, we also check the influence of
network size on the prediction accuracy of four theoretical methods by 5 positively (r = 0.1) and 5 negatively (r = 0.1)
correlated networks with power-law degree distribution � = 2.2. Fig. 7 shows the relations between theoretical and
numerical predictions, which suggests that �DMP

c and �CM
c are more precisely close to the outbreak thresholds of numerical

simulations. Thus, DMP and CM are also robust to the changing network size, as well as the degree correlation and degree
distribution exponent.

Then, in term of network size, we shown the (average) absolute and relative errors of �HMF
c , �QMF

c , �DMP
c and �CM

c in respect
to �c (see Fig. 8). Specifically, in Fig. 8(b) and (d), we can see that with the increasing network size, the average absolute and
the relative errors of �DMP

c and �CM
c are much smaller than HMF and QMF and robust to network size, which confirms the

better predictions of DMP and CM .

3.2. Results in real-world networks

We provide a comparison of four theoretical methods for predicting outbreak threshold of SIR spreading dynamics
in synthetic networks, and confirm that DMP and CM show much better theoretical predication accuracy in respect to
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Fig. 6. Overview of SIR spreading dynamics with different network size N . (a) Final outbreak size R1 vs. � for N = 1000 (black squares), 2000 (red circles),
4000 (blue up-triangles), 8000 (green down-triangles) and 16000 (magenta diamonds). (b) Variability � vs. � for N = 1000 (black squares), 2000 (red
circles), 4000 (blue up-triangles), 8000 (green down-triangles) and 16000 (magenta diamonds). We fix the degree correlation coefficient r = 0.1 and the
degree distribution exponent � = 2.2. We can see that the outbreak thresholds reduces with the increasing network size and the outbreak sizes R(1) for
large � are almost independent of the network size.

Fig. 7. Compare the prediction accuracy of outbreak thresholds between four theoretical methods and numerical prediction in 10 synthetic networks.
Theoretical predictions of �CM

c (black squares), �HMF
c (red circles), �QMF

c (blue up-triangles) and �DMP
c (green down-triangles) versus numerical prediction

�c . For positively (r = 0.1) and negatively (r = �0.1) correlated networks, we set the degree distribution exponent � = 2.2 and the network size
N = 1000, 2000, 4000, 8000, 16 000.

numerical simulations. In this section, we extend the comparison of four theoretical methods via 50 real world networks.
The topological structures of 50 real world networks and their theoretical outbreak thresholds of SIR spreading dynamics are
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Fig. 8. The influence of network size on the absolute errors and relative errors of four theoretical methods. In the first column, (a) and (c) are the absolute
errors and relative errors of theoretical methods in term of network size N , and the corresponding average absolute errors (b) and relative errors (d) are
shown in the second column. We can find that the prediction accuracy of DMP and CM are significantly better than HMF and QMF .

present (see supporting material). Note that 50 real world networks do not strictly obey the power-law distribution, so that
the degree distribution exponents cannot precisely estimated. And, we mainly analyze the influence of degree correlations
on the prediction accuracy of outbreak thresholds of SIR spreading dynamics in 50 real world networks.

Firstly, we explore the relations between the theoretical and numerical outbreak thresholds of SIR spreading dynamics in
50 real world networks. Fig. 9 shows the prediction accuracy of four theoreticalmethods in respect to numerical simulations,
which suggests that DMP , CM and QMF behave relatively better, and HMF obviously works in the worst.

Then, to more precisely evaluate the performance of four theoretical methods, we statistically divide 50 real world
networks in term of degree correlation. The interval of degree correlation coefficients of 50 real world networks is
[�0.878, 0.267], of which the bin (r � �r/2, r + �r/2) is set with the size �r = 0.1. For each bin, compute the (average)
absolute errors and relative errors of �HMF

c , �QMF
c , �DMP

c and �CM
c in respect to �c in respect to �c (see Fig. 10). We can see that

in most cases, CM perform better than other three methods. However, when the degree correlation coefficient is too small,
DMP is the best prediction while HMF works in the worst. Thus, we claim that the CM and DMP are more proper to predict
epidemic threshold of SIR spreading dynamics in correlated networks.

4. Conclusion

We have systematically investigated the influence of degree correlation, degree distribution exponent and network size
on the epidemic thresholds of SIR spreading dynamics in correlated networks and provided a comparison of present four
theoretical methods to precisely predict the epidemic thresholds of correlated networks. Firstly, through presetting the
network size and the degree distribution exponent,we explore that how the changing degree correlations affect the epidemic
thresholds of SIR spreading dynamics. The simulation results suggest that the gradually increasing degree correlation
coefficients reduce the outbreak threshold and suppress the outbreak size because more nodes form the rich-club structure
promoting the spreading of disease. And, the comparison of four theoretical methods in respect to numerical simulations
indicates that DMP performs the best predictions of outbreak threshold of synthetically correlated networks, and a little
better than CM .
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Fig. 9. Compare the prediction accuracy of outbreak thresholds between four theoretical methods and numerical prediction in 50 real-world networks.
Theoretical predictions of �CM

c (black squares), �HMF
c (red circles), �QMF

c (blue up-triangles) and �DMP
c (green down-triangles) versus numerical prediction �c .

We can see that DMP , CM and QMF behave relatively better, and HMF works in the worst.

Then, we illustrate the influence of degree distribution exponent on the epidemic threshold and the prediction accuracy
of outbreak threshold via four theoretical methods. With the increasing degree distribution exponent, the network becomes
less heterogeneous, which makes nodes with high degree decrease. Thus, it results that the spreading of disease becomes
difficult, which increases the outbreak threshold but suppresses the outbreak size. And, in term of degree contribution
exponent, the comparison of four theoretical methods in respect to numerical simulations represents the similar conclusion
found in term of degree correlation.

In addition, we also examine the influence of network size on the epidemic threshold and the prediction accuracy of
outbreak threshold via four theoretical methods. We find that the correlated networks with larger size easily promote the
epidemic outbreak, however, little affect the outbreak size. The reasonmay be that with the increase of the network size, the
nodes with higher degree will increase according to network model, which speeds up the spreading process. And, in term of
network size, DMP and CM behave approximately same performance.

Finally, as the comparison of four theoretical methods is based on the analysis and numerical simulations performed in
synthetically (correlated) networks, we extend it based on 50 real world (correlated) networks. In term of degree correlation,
50 real world networks are statistically classified into several bins. For each bin, we compare the prediction accuracy of
outbreak thresholds via four theoretical methods in respect to numerical simulations. Overall, CM performs the best in most
of cases, however, DMP behaves better when the degree correlation coefficient is too small. Thus, we confirm that CM and
DMP are more proper to predict epidemic threshold of SIR spreading dynamics in real-world correlated networks.

Precisely predicting epidemic thresholds in correlated networks is profoundly significant in the field of spreading
dynamics. Our results suggest that the epidemic threshold of the network is not only related to the degree correlation, but
also to the degree distribution and the size of the network. The findings expand our understanding of epidemic thresholds
and provide ways of determine the fitness of prevalent theoretical method to predict the epidemic threshold in a variety of
correlated networks. It is worth noting that in synthetically correlated networks DMP method robustly performs in the best,
but in the real-world networks, it only works better when degree correlation coefficient is very small. This case may to some
extent relate to other factors of network structure, such as the diverse heterogeneity and size of real world networks, which
is still a question worthy of further discussion.
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Fig. 10. The influence of degree correlation on the absolute errors and relative errors of four theoretical methods. In the first column, (a) and (c) are the
absolute errors and relative errors of theoretical methods in respect to simulating outbreak thresholds. The corresponding average absolute errors (b) and
relative errors (d) are shown in the second column. The results are in term of degree correlation, and confirm that in most of networks.

Appendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.physa.2018.03.052.
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