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• Weight of links is taken into consideration in the construction of a PPI network.
• Disease genes show distinct topological properties from non-disease genes.
• An improved forest-based model was applied as classifier.
• Weighted networks perform better than unweighted networks.
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a b s t r a c t

Although there have been many network-based attempts to discover disease-associated
genes, most of them have not taken edge weight – which quantifies their relative strength
– into consideration. We use connection weights in a protein–protein interaction (PPI)
network to locate disease-related genes. We analyze the topological properties of both
weighted and unweighted PPI networks and design an improved random forest classifier
to distinguish disease genes from non-disease genes. We use a cross-validation test to
confirm that weighted networks are better able to discover disease-associated genes than
unweighted networks,which indicates that including linkweight in the analysis of network
properties provides a better model of complex genotype–phenotype associations.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Networks provide a ubiquitous and efficient tool for the analysis of biological systems [1–3]. Researchers found that a
disease phenotype rarely results from an aberration in a single gene, but is a consequence of various pathological processes
that interact in a complex network [4]. The requirement of discovering disease genes from molecular networks leads to
the development of ‘‘Network medicine’’ [4], which recapitulates the molecular complexity of human disease and offers
network-based computational methods to unravel how the molecular complexity manipulates human disease.

Researches dedicating to systematically capture the properties of disease-associated genes in molecular networks have
demonstrated that genes related to the same or similar diseases, tend to cluster and interact with each other in these
networks [5–7]. These findings promote the development of network-based approaches for identifying and prioritizing
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candidate disease genes by using biological network data, such as protein–protein interaction (PPI) networks [8–10], disease
phenotype networks [11–13], regulatory networks [14–16] and co-expression networks [17–19], etc.

Although has contributed a lot to disease diagnose and therapy [4], discovering disease-associated genes by using biologi-
cal and biomedical networks, is still a challenging task in human genetics. Current network-based approaches for identifying
disease-related genes have important limitations [20]. Plenty of network-basedmethods depend on sophisticated integrated
data source [11–19,21,22],which lead to time consumption and increasing computing complexity. Our response is to propose
a novel network-based approach to discover disease-related genes by using only PPI network data. A PPI network consists
of physical interactions between proteins and is widely used in discovering disease genes [23]. The connections between
proteins and human diseases confirm that proteins that physically interact with each other share a common function [5,24].
Thus, an aberration in one protein tends to replicate similar disease phenotypes. Accordingly, PPI network is a powerful data
source for discovering disease-related genes.

Furthermore, in most exiting network-based methods, all the connections between nodes are binary with values being
either 1 or 0, which means the networks they used to identify disease genes are unweighted. Unweighted networks can
only reflect whether there are any interactions between vertices, but fail to display different interaction weights between
nodes. However, as has long been appreciated, many molecular networks, such as PPI networks, are intrinsically weighted,
their edges are not merely binary entities, but have different weights that record their strengths relative to one another. The
weight of edges in molecular networks plays an important role in deciphering the topological properties of PPI networks.
In order to take into account the existing heterogeneity in the capacity and intensity of connections, we employ a weighted
PPI network to analyze the distinct topological properties between disease and non-disease genes.

In this paper, we propose a hybrid network-based method for the discovery of disease-related genes. We consider the
heterogeneity of interactions between genes and construct a weighted PPI network for the purpose to better capture the
network topological properties. We then analyzed topological properties of both weighted and unweighted PPI networks.
The analysis results show that disease genes have discriminatory network properties which enable their distinction from
non-disease genes in bothweighted and unweighted PPI network.We constructed four different classificationmodels based
onKNN, SVM, RandomForest andCForest, respectively. The topological properties are combined in tandem to use as inputs of
the classifier.Weuse grid-search and10-fold cross validation to find the optimal parameters for every classifier andCForest is
chosen as the best classificationmodel according the prediction performance. The computational simulation results reported
that theweighted andunweightednetworks achieve 88.56% and83.57% classification accuracy, respectively. It demonstrated
that, by considering the weight of edges, we successfully improved the discovery of disease genes and contributed a deeper
understanding into complex genotype–phenotype relationships.

2. Materials and methods

2.1. Data sources

We downloaded high-quality protein–protein interactions from HIPPIE v2.0 (the Human Integrated protein–protein
Interaction rEference) [25]. HIPPE database collects human PPIs with experimental annotations from seven major expert-
curated databases [26–32]. For each PPI, HIPPIE assigned a stringent confidence score to reflecting its reliability and
authenticity. This score is computed by integrating diverse experimental evidence and applying basic network node
importance evaluating algorithms. HIPPIE map all source database entries to gene names, Entrez gene ids and UniProt ids
or accessions. In this work, we downloaded 71823 ‘‘high confidence’’ PPIs (confidence score is equal or greater than 0.73)
involving 11813 proteins.

We obtained the list of disease-associated genes and non-disease genes supplied by the Online Mendelian Inheritance
in Man (OMIM) [33]. The genemap file of OMIM has 16161 records with gene symbols, MIM number and related disease
phenotypes.We use phenotypemapping key, which appears in parentheses after a disorder, to select gene–disease relations
with key (3). This group of gene–disorder associations has well-known molecular basis and a mutation to support. We got
10980 genes involving 3700 disorder phenotypes, indicating that most diseases are polygenic.

Gene Symbols are used to match the disease and non-disease gene lists from OMIM to protein–protein interactions from
HIPPIE. We got 1608 genes that have at least one related disease phenotype and one PPI as disease gene samples, and 3645
geneswith interactions inHIPPIE but no disease association record inOMIMas non-disease gene samples. These 1608disease
genes are considered to be positive samples, and 1608 non-disease genes are randomly selected to be negative samples.

2.2. Weighted PPI network construction

We constructed a weighted PPI network by the 71823 high-quality PPIs we got from HIPPIE. This weighted network is
modeled as an undirected graph Gw = (V , E, we), where V = {v1, v2, . . . , vM} is the set of nodes, E = {e1, e2, . . . , eN} is the
set of edges and we is the set of edge weights. Two nodes, referring to proteins in PPI network, are connected by a weighted
edge if there is an interaction between them. Based on the confidence score, each edge is assigned a weight

w(ei) =
si√∑N

i−1(si − s̄)2/(N − 1)
, (1)
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Table 1
Topological properties of PPI network.

Features Function Description Ref.

Degree ki The number of edges connected with node i. [35]

ANN
∑k

i=1ki
k The average nearest neighbor degree of node

i with degree k.
[36]

Authority Centrality t(A) ∗ Ax = λx The principal eigenvector of t(A) ∗ A [37]
Betweenness Centrality g(i) =

∑
i̸=j̸=k

σjk(i)
σjk

σjk is the total number of shortest paths from
node j to node k, σjk(i) is the number of that
paths going through node i.

[38]

Closeness Centrality C(i) =
N∑

i̸=jd(i,j)
N is the network size, d(i, j) refers to the shortest
path between node i and j.

[39]

Eigenvector Centrality Ax = λx λ is the eigenvalue of adjacency matrix A. [40]
PageRank PR(i) = (1 − d) + d

∑
j∈N(i)

PR(j)
ki

N(i) stands for the neighbors of node i, d
s damping factor.

[41]

Burt’s constraint cons(υ) =
∑

localCons(υ, ω) (ω ∈ MP(υ), ω ̸= υ) MP(υ) is the subset of υ ’s neighbors that are
oth predecessors and successors of υ .

[42]

where w(ei) is the weight of edge i, i ∈ {1, · · · ,N}, si refers to the confidence score of edge i and s̄ is the mean value of all s.
Theweight of a protein pair indicates the reliability of the interactions between the two proteins. After discarding self-loops,
multiple edges, we have a weighted PPI network with 11183 nodes and 66718 edges.

2.3. Network topological properties analysis

It has been noticed that disease genes have distinct network topological properties with non-disease genes [34]. We
therefore analyze how the topological properties of disease genes in the network differ from those of non-disease genes for
the purpose to discover disease genes from non-disease genes. We use eight network topological measurements to capture
the topological properties of the PPI network, which can be broadly categorized into (i) neighbor-based measurements,
including degree and average nearest-neighbor degree, (ii) path-based measurements, including betweenness centrality,
closeness centrality and Burt’s constraint, (iii) eigenvector-based measurements, including authority centrality, eigenvector
centrality, and PageRank. In Table 1, we display an introduction of these topological features with function, description, and
reference.

These features evaluate the topological importance of a gene in the PPI network from various perspectives. For instance,
the degree of a node shows how many edges that incident to this node, it believes that the more neighbors a node owns,
the more influential it is. While K -Nearest Neighbor displays the average nearest neighbor degree of a node, which is
obviously complementarywith degree, cause different neighbors’ degree of different nodeswill unavoidably lead to different
topological importance.

Betweenness, closeness and Burt’s constraint are path-based centralitymeasurements. Betweenness captures the control
of nodes on the network flow along the shortest path in the network. The definition of betweenness suggests that if a node
is the only way to communicate between other node pairs in the network, it will have an essential position in the network.
Closeness judges the node importance by the average path length of information propagation in the network. High closeness
score means a node is close to the center of the network, therefore more important. Burt’s constraint measures the network
closure and structural holes. A structural hole is understood as a gap between two individuals who have complementary
sources to information. The smaller the constraint value of a node is, the larger the structural hole is, and themore important
is the node in the network.

The other three are all eigenvector-based measurements, whose basic idea is to assign relative scores to all nodes in
the network based on the concept that connections to high-scoring nodes contribute more to the score of the node in
question than equal connections to low-scoring nodes. Eigenvector centrality uses the adjacency and eigenvector matrices
to score the relative importance of all nodes in the network by weighting connections to highly important nodes more than
connections to nodes of low importance. As graph G is undirected and loop-free, the adjacency matrix A is symmetric, and
all diagonal entries are 0. Eigenvector centrality can be computed by finding the principal eigenvector of the adjacency
matrix A. Eigenvector centrality is suited to measure nodes’ power to influence other nodes in the network both directly
and indirectly through its neighbors. Connections to neighbors that are in turn well connected themselves are rated higher
than connections to neighbors that are weakly connected. Authority centrality and PageRank are variants of the eigenvector
centrality measure. Authority centrality estimates the value of the content of the page. A node is important if it contains
valuable content and hence receives many links from other important sources. A good authority represents a page that
contain reliable information on the topic of interest and is linked by many different hubs. PageRank works by counting
the number and quality of links to a page to determine a rough estimate of how important the website is. The underlying
assumption is that more important websites are likely to receive more links from other websites. It assigns a numerical
weighting to each element of a hyperlinked set of documents, such as theWorldWideWeb,with the purpose of ‘‘measuring’’
its relative importancewithin the set. Although both authority centrality and PageRank are initially proposed as link analysis
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algorithms to rate Web pages, they also widely applied to any collection of entities with interactions such as molecular
network.

The theoretical analysis of the above topological importance measurements indicates that using a solo indicator to
evaluate the importance of a node in the network has a great one-sidedness. Therefore, we synthesize eight indicators to
describe the complex network topology from different perspectives in this paper.

2.4. Classifier

We employ four binary classifiers with different principles to distinguish disease-associated genes from non-disease
genes based on the network topological properties.

• KNN classifier.

The k-nearest neighbors (KNN) algorithm is a linear supervised pattern recognition method used for classification and
regression [43]. KNNperforms classification by comparing a specific test tuple to a collection of labeled examples in a training
set. Each new sample in prediction set is classified according to the class of the majority of its k-nearest neighbors in the
training set. Parameter ‘‘K ’’ indicates the number of neighbors taken into account in determining the class. It has a great
influence on the identification rate of KNN model.

• SVM classifier.

The support vector machine (SVM) is a supervised machine learning algorithm based on the statistical learning the-
ory [44]. SVM is usually used to solve classification and regression problems and has been successfully applied to bioinfor-
matics investigations, such as the identification of alternative splice sites [45]. The basic thought of SVM is tomap the original
data into a high-dimensional feature space through a nonlinear mapping function and then to construct a hyperplane as the
discriminative surface between the positive and negative data.

• RF classifier.

Random Forest (RF) algorithm is an ensemblemachine-learningmethod developed by Breiman [46], and has beenwidely
applied to classification problems in bioinformatics area [47]. RF is consisted of many base tree-structured classifiers such as
CART (Classification and Regression Tree) and is proven to be robust to noise, no over-fitting and computationally feasible.
By applying CART as a base classifier, RF collects the outputs of all decision trees to vote for the final result, then a sample is
classified according the voting result.

• CF classifier.

The majority-voting rule in traditional RF algorithm renders the minority categories more likely to be misclassified. In
response to this limitation of traditional RF, an improved RF function called CForest (CF) is proposed [48]. In contrast to
standard RF based on CART with unfair splitting criterion, CForest is established by unbiased base classification trees based
on a conditional inference framework.

CForest provides an unbiased variable importance measure based on a conditional permutation scheme for feature
selection [49]. The new permutation importance scheme is based on a partition of the entire feature space that is determined
directly by the fitted forest model. Accordingly, it is practicable for demonstrating the influence of a variable and computing
its permutation importance conditional on correlated covariates of any type.

2.5. Performance assessment

In this work, precision, recall, accuracy and AUC (area under curve) of ROC (receiver operating characteristic) curve are
used to evaluate the prediction performance,

precision =
TP

TP + FP
, (2)

recall =
TP

TP + FN
, (3)

accuracy =
TP + TN

TP + TN + FN + FP
. (4)

We calculate these performance measurements using the number of true positives (TP), true negatives (TN), false positives
(FP), and false negatives (FN) at a score cut-off that distinguishes predicted from non-predicted. Positives are disease genes
and negatives are non-disease genes.
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Fig. 1. Comparatively analysis of network topological properties between different gene groups in weighted PPI network.

3. Results

3.1. Results of network topological properties analysis

We calculated all the eight network topological importance indicators of both weighted and unweighted networks in R
3.2.3 and comparatively analyzed themean value andmedian of these features in three different gene sets, including disease
genes, non-diseases genes, and all genes, in order to explore the topological discrimination of disease and non-disease gene.
The analysis results of weighted and unweighted networks are displayed in Fig. 1 and supplementary file S1, respectively.
We use t test to measure the statistically significant differences between disease and non-disease genes and the p values
show that the difference is significant in both weighted and unweighted networks.

It can be observed from Fig. 1 that, comparing to non-disease genes, disease genes tend to get higher scores of degree
(p = 0.0005156), average nearest neighbor degree (p = 0.006554), betweenness centrality (p = 0.000002979), and
PageRank (p = 0.00005328), but lower scores of authority centrality (p = 0.0003492), eigenvector centrality (p = 0.0364),
closeness centrality (p = 0.04986) and constraint (p = 0.0005156). These analysis results show that disease genes have
discriminatory network topological properties in PPI network that allow their distinction from non-disease genes.

3.2. Performance of different classifier

To highlight the good performance in discrimination of disease and non-disease genes according to network topological
properties, we attempted to compare four classification results from KNN, SVM, RF and CF approaches in this work. In the
conduction of classifier model, parameter tuning plays a crucial role to build a binary-class model with high prediction
accuracy and stability. In each classifier, parameterswere optimized according to the prediction performance they eventually
achieve. A parameter will be settled when it reaches the best prediction performance.

In KNN model, we search the optimal parameter K value by using a 10-fold cross validation. The prediction errors for a
given set of K values are estimated by cross-validation, and then the K value that makes the subsequent KNN classification
yield optimal results is selected. Therefore, in this work, 20 K values (K = 1, 2, . . . , 20) were optimized by a 10-fold cross-
validation. The KNN classifier achieves an optimal performance when K = 8.

In SVM model, we attempt four common kernel functions, including radial basis function (RBF) kernel, linear kernel,
polynomial kernel, and sigmoid kernel. Each kernel function has several parameters and proper tuning of these parameters
significantly affects the classification performance of SVM model. We use a grid-search technique and 10-fold cross-
validation to search the optimal parameter values of SVM with different kernels. The prediction performance results of
different kernels in SVM are given in Table 2. For all the four kernels, RBF kernel achieves the best prediction rate. According
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Table 2
Kernel optimization in the SVM classifier.

Kernel type Parameters Precision (%) Recall (%) Accuracy (%)

C g d r

Linear 247 70.58 71.77 71.65
RBF 100 0.01 72.48 72.78 73.02
Poly 27 0.1 3 71.83 72.07 72.85
Sigmoid 512 0.01 0.2 72.02 71.86 72.98

Table 3
Parameter optimization details in different classifiers.

Classifier Parameters Step size in search Search range Optimal value

KNN K 1 1:20 8

SVM C 1 1 : 500 100
lg g 1 10[−6:−1] 0.01

Random Forest ntree 10 10:500 130
mtry 1 1:8 3

CForest ntree 10 10:500 200
mtry 1 1:8 2

the performance, we chose RBF kernel as the basic kernel function of SVM classifier. There are two important parameters
associated with RBF kernels: C and g . The optimal pair of (C, g) is found at (100, 0.01) by a grid-search and 10-fold cross-
validation.

In random forest model, two parameters are important: ntree andmtry. ntree is the number of trees used in the forest and
mtry is the number of variables available for splitting at each tree node. The forest error rate depends on two things: (i) The
correlation between any two trees in the forest. Increasing the correlation increases the forest error rate. (ii) The strength
of each individual tree in the forest. Increasing the strength of the individual trees decreases the forest error rate. Reducing
mtry reduces both the correlation and the strength. Increasing it increases both. Somewhere in between is an ‘‘optimal’’
range of mtry. Larger number of trees produce more stable models and covariate importance estimates, but require more
memory and a longer run time. We use a grid-search and 10-fold cross-validation to find the optimal ntree andmtry. Finally,
we found that when ntree = 130 andmtry = 3, the RF classifier reaches its best performance.

CForest parameter optimization is similar as random forest. A grid-search with cross-validation is adopted to search the
best ntree andmtry. The optimal pair of (ntree,mtry) is found at (200, 2). All the parameter optimization details in KNN, SVM,
RF and CF models were shown in Table 3.

With the optimal parameters, we constructed four classifier models to discover disease-associated genes based on KNN,
SVM, RF and CF, respectively.Weuse precision, recall, accuracy andAUC to compare their prediction performance, the results
are shown in Fig. 2. Seen from overall classification results in Fig. 2, the non-linear models (SVM, RF and CF) are superior to
the linear model (KNN), and the CForest model is the best. These classification results might be explained by some relevant
statistical learning theories. Theoretically, non-linearmethod performs better than linearmethod in the level of self-learning
and self-adjust. Therefore, non-linear model has often a simpler structure and a higher performance of classification. The
basic idea of CForest is to ensemble unbiased base classification trees in a conditional inference framework to eliminate
errors caused bymajority voting rule that used in KNN and RFmodel. Therefore, CForest embodies the superior in its theory,
which may leads to a better prediction performance than other classifier.

3.3. Feature importance

CForest model provides an unbiased measure of variable importance, which can be used to evaluate the importance
of the features applying in the classification. We obtain the importance scores of every network topological properties
calculated by CForest and rank the network topological properties by their importance scores. Fig. 3 shows the eight features
ranked according their importance scores generated by CForest classifier. The rank of a feature indicates its importance in
discriminating disease genes from non-disease genes.

3.4. Comparing weighted and unweighted networks

To demonstrate the superiority of weighted network, we compare the precision, recall, accuracy and AUC of weighted
and unweighted networks by using CForest classifier. Table 4 shows the results of this comparison, which indicates that
weighted network-based method is significantly better than unweighted network.
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Fig. 2. Prediction performance comparison of different classifiers.

Fig. 3. Importance rank of topological properties.

Table 4
Performance comparison of weighted and unweighted networks.

Network Precession (%) Recall (%) acc(%) AUC

weighted 91.42 86.47 88.56 95.56
unweighted 85.29 82.63 83.57 91.88

4. Conclusion

This paper was motivated by the need for discovering disease-associated genes based on the topological properties
of PPI network with the weight of interactions taken into consideration. We downloaded protein–protein interactions
with confidence scores from HIPPE and gene–disease relations from OMIM to constructed a weighted PPI network for
the discovery of disease-associated genes. Topological properties including degree, average nearest neighbor degree,
authority centrality, betweenness centrality, closeness centrality, eigenvector centrality, Burt’s constraint and PageRank
were statistically analyzed to evaluate the topological importance of a gene in the PPI network from various perspectives.
We then comparatively analyzed these topological properties by different groups and found that there is a significant
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discrimination between disease-related genes and non-disease genes. In contrast to non-disease genes, disease genes tend
to get higher scores score in degree, average nearest neighbor degree, betweenness centrality, and PageRank, but lower in
authority centrality, eigenvector centrality, closeness centrality and constraint.

We combined these topological properties in tandem to serve as an input of classifier. We attempted four different
classifiers including KNN, SVM, Random Forest and CForest, to complement the discrimination task. We used grid-search
and 10-fold cross validation to find the optimal parameters for every classification model, trying to make each of them
achieve its best performance. Finally, the improved random forest classifiermodel called CForest outperforms the other three
models and reaches the best prediction accuracy.With the unbiased variable importancemeasure supplied in CForestmodel,
we ranked the importance of network topological properties, which is supposed to offer us a deeper understanding on the
sophisticated genotype–phenotype associations. In addition, we presented a comparison of the prediction accuracy between
weighted and unweighted networks to validate the superior ofweighted network adoption in discovering disease-associated
genes. It is obvious that our work contributes an improved method for disease gene discovery and a deeper understanding
of how network topological properties affects gene–disease relations.
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