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We analyze the stochastic function Cn(i)[y(i)2 ỹn(i), where y(i) is a long-range correlated time series of
length Nmax and ỹn(i)[(1/n)(k50

n21y(i2k) is the moving average with window n. We argue that Cn(i) gen-
erates a stationary sequence of self-affine clusters C with length , , lifetime t , and area s. The length and the
area are related to the lifetime by the relationships ,;tc, and s;tcs, where c,51 and cs511H . We also
find that , , t , and s are power law distributed with exponents depending on H: P(,);,

2a, P(t);t2b, and
P(s);s2g, with a5b522H and g52/(11H). These predictions are tested by extensive simulations on
series generated by the midpoint displacement algorithm of assigned Hurst exponent H ~ranging from 0.05 to
0.95! of length up to Nmax5221 and n up to 213.
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Long-range correlated time series, such as fractional
Brownian motion, have been widely used for the theoretical
description of diverse phenomena. The variance at large t
scales as a power law:

s2;t2H. ~1!

Here H, the Hurst exponent, ranges from 0 to 1, with H
50.5 corresponding to ordinary uncorrelated Brownian mo-
tion. H is related to the fractal dimension D by D522H .
The Hurst exponent has been successfully exploited for prac-
tical purposes in fields as different as biophysics, econophys-
ics, and climate physics @1–9#. For example, heartbeat inter-
vals of healthy and sick hearts can be distinguished on the
basis of the value of H @3–5,9#. The stock price volatility
shows a degree of persistence (0.7,H,0.8) larger than that
of the price series (H;0.5) @6#. The validation of climate
models is based on the analysis of a long-term correlation of
atmospheric series @7#.

A number of approaches are currently used to obtain ac-
curate estimates of H. Such procedures generally consist
of calculating appropriate statistical functions from the entire
signal. Each procedure produces a slightly different estimate,
so in order to obtain the most reliable estimates of H it
is useful to apply as many approaches as possible, preferably
combining techniques working in the spectral and time do-
mains @10#. Here we propose an approach motivated by
detrended moving average analysis, which was recently de-
veloped @11,12# as an alternative to the detrended fluctua-
tion analysis technique @14#. One begins by defining the
function

sMA[A 1

Nmax2n (
i5n

Nmax

Cn~ i !2, ~2!

where Nmax is the length of the series,

Cn~ i ![y~ i !2 ỹn~ i !, ~3!

and

ỹn~ i ![
1

n (
k50

n21

y~ i2k ! ~4!

is the moving average of window size n, i.e., the average of
the signal over n points. It is a linear operator, whose output
are the low-frequency components of the signal, which are
selected on the basis of the window amplitude n @13#. The
function sMA shows a power-law dependence on n, i.e.,
sMA;nH @11,12#.

We explore the properties of the function Cn(i) which
generates, for each ỹn(i), a sequence of clusters C, each
corresponding to the region delimited by two consecutive
intersections between y(i) and ỹn(i) ~see Fig. 1!. Three
quantities can be defined:

FIG. 1. Stochastic series y(i) of length Nmax5219 obtained by
the random midpoint displacement algorithm with H50.8. Also
shown is the moving average ỹn(i), with box dimension n530.
The time interval between two subsequent crossing points y(i) and
ỹn(i) define the length , j , the duration t j , and the area s j of the
cluster according to Eqs. ~5!, ~6!, and ~7!.
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~1! cluster length , j ,

, j[ (
i5ic( j)

ic( j11)

y~ i !, ~5!

~2! cluster lifetime t j ,

t j[ic~ j11 !2ic~ j !, ~6!

and ~3! cluster area s j ,

s j[ (
i5ic( j)

ic( j11)

uy~ i !2 ỹn~ i !uDi , ~7!

where the index j refers to each cluster, ic( j) and ic( j11)
are the values of the index i corresponding to two subsequent
intersections between ỹn(i) and y(i) and Di is the time in-
terval corresponding to an elementary fluctuation in the time
series. Finally, let , and s indicate the value of the length and
of the area obtained by averaging , j and s j over the subset of

clusters C having the same value of lifetime t. Figures 2~a!
and 2~b! show log-log plots of the cluster length , and the
cluster area s plotted against the cluster lifetime t for long-
range correlated time series constructed with the random
midpoint displacement technique and with different values of
H. The log-log plots are consistent with linearity over more
than two decades, i.e., with the power law relationships

,;tc, ~c,51 !, ~8!

and @15#

s;tcs ~cs511H !. ~9!

The values of c, and cs are plotted as functions of H re-
spectively in Figs. 3~a! and 3~b!, and compared with the
theoretical predictions @15#.

Next we calculate the probability density function ~PDF!
of the cluster lifetime t @see Fig. 4~a!# of the cluster length ,

FIG. 2. ~a! Log-log plot of the cluster length , vs the cluster lifetime t for series having different H, H50.2, 0.3, 0.4, 0.5, and 0.8. ~b!

Log-log plot of the cluster area s vs the cluster lifetime t for H varying between H50.1 and 0.9 in steps of size 0.1.

FIG. 3. Plot of the exponents ~a! c, vs H @Eq. ~8!# and ~b! cs vs H @Eq. ~9!# for series having different H @from H50.05 to 0.95 in steps
of size 0.05 ~circles!#. The relationships c l51 and cs511H are shown ~dashed lines!.
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and of the cluster areas @see Fig. 4~b!#. The results are con-
sistent with a power-law behavior:

P~t !;t2b. ~10!

P(t) is the first return probability distribution @16–18# of the
crossing points between ỹn(i) and y(i), with exponent b:

b522H . ~11!

Equations ~8! and ~9! allow us to relate the probability
density functions P(,) and P(s) to P(t):

P~, !5P~t~, !!
dt

d,
;,

2a, ~12!

P~s !5P~t~s !!
dt

ds
;s2g. ~13!

By using Eqs. ~8! and ~12!, the exponent a can be written in
terms of the exponent b as

a5b522H . ~14!

Analogously, using Eqs. ~9! and ~13!, g can be expressed in
terms of b and cs as

g5

b112cs

cs
5

2

11H
. ~15!

To test the predictions of Eqs. ~14! and ~15!, we have
calculated the exponents a, b, and g for a wide range of
parameters: Nmax ranges from 214 to 221 while n ranges from
23 up to 213. The exponents b and g are plotted against H in
Figs. 5~a! and 5~b!, and compared with thepredictions of
Eqs. ~14! and ~15!.

FIG. 4. ~a! The PDF P(t) of the cluster lifetime t for a time series with H50.3; the results are consistent with a power-law dependence
P(t);t2b. The curves, from left to right, are obtained for window sizes n5200, 600, and 1000. The onset of the finite-size effect is visible
when t is approximately equal to the moving average window n. ~b! The PDF P(s) of cluster area s for n51000, consistent with a
power-law dependence P(s);s2g, and three different values of H, H50.3, 0.5, and 0.8.

FIG. 5. ~a! The exponent b vs H @Eq. ~10!# for series having different H (H50.05–0.95 with step size 0.05!. The relationship b52
2H is also shown ~dashed line!. ~b! Plot of the exponent g vs H @Eq. ~15!# for series having different H (H50.05–0.95 with step 0.05!. The
relationship g52/(11H) is also shown ~dashed line!.
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In summary, the statistical properties of the sequence of
stationary self-affine clusters C generated by the intersections
of the time series y(i) with the moving average ỹn(i) have
been analyzed. For model series of length up to Nmax51021

we calculate the area s;tcs and the PDFs P(,);,
2a,

P(t);,
2b, and P(s);s2g. Our results are consistent with

power laws whose exponents agree with the predictions cs

511H , a5b522H , and g52/(11H) for a wide range
of H (0.05,H,0.95). It is noteworthy that the scaling

properties of the C clusters are reminiscent of the self-
organized criticality ~SOC! model, proposed by Bak, Tang,
and Wiesenfeld @19#. This similarity can be derived from the
relation between the growth dynamics of the C clusters and
of the steady-state SOC clusters. An in-depth discussion of
such issue is however beyond the scope of the present work
and will be developed elsewhere.
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