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A practical method of calculating high-temperature series expansions that are exact in the external
magnetic field is presented. This method is _gllus_grated by calculating the magnetization (8 ) and
nearest-neighbor pair-correlation function (§;+ 8, ,,) for a classical Heisenberg ferromagnet on a fcc
lattice. It is found that at T ~ 4T, four terms in the expansion suffice to give information which is
of value in interpreting data on EuO presented in the preceding paper. For T > T, and at low

magnetic fields (i.e., ( §°) <S ), we find (gi -3

arn—$8," 8

). =A(8?)% where A isa

+1°0

coefficient of order unity which depends on T /T,. The dependence of A on T /T is evaluated from
the high-temperature series expansion and also by an alternative method.

1. INTRODUCTION

When a magnetic field H is applied to a Heisen-
berg ferromagnet at nonzero temperatures, both
the magnetization M(H, T) and the nearest-neigh-
bor two-spin correlation function I'(H, T)= (§; S
are expected to increase.! In this work we calcu-
late the H dependence of I'(H, T') at temperatures
well above the critical temperature, and we relate
the H-induced increase in I'(H, T') to the increase
in the magnetization M(H, T). This work was moti-
vated principally by the need to analyze electrical
transport data in EuQ, 2 for which a knowledge of
the H dependence of I'(H, T') at T = 4T . was neces-
sary.

_In the paramagnetic limit of noninteracting spins
<Si ¢ Siv&l): <s:) (S:+l>’ so that

n=I(H,T)/T(>,T) (1.1)
reduces simply to ¢%, where
o=MH,T)/M(,T) (1.2)

is the reduced magnetization.

In the mean-field approximation to the Heisen-
berg model, the spins are treated as statistically
independent so that n=0? at all temperatures and
fields.® On the other hand, in real systems, when
T>Tc;and H=0, ¢=0 but n#0. The aim of the
present work is to calculate the H dependence of
n and 0 at 7= 47T, and to relate n(H)-n (0) to o(H).
The calculations of n(H) -7 (0) and 0 were carried
out only to an accuracy of several percent, but
this accuracy was found to be sufficient for our
purpose of analyzing the electrical transport data
in Eu0.?

The dependence of 17 upon both H and T has been
calculated previously by Callen and Callen* using

8

the two-spin Oguchi cluster approximation. How-
ever, this approximation has historically been less
reliable than the method of series expansions in the
variable J/kT, where J is the exchange parameter
and % is the Boltzmann constant.® Accordingly,

we have applied the latter approach. Previous
series work has been limited either to the case of
H=0 or has been restricted to double series in
J/RT and k, *® where & is the magnetic field in
units of energy. In this work we present what we
believe to be the first high-temperature series ex-
pansions in J/kT that are exact in magnetic field.
Our method requires considerable labor if higher
orders in the expansion in (J/kT) are needed. How-
ever, in some cases meaningful results can be ob-
tained by retaining only several terms in the ex-
pansion. In particular, the inclusion of only four
terms in the expansion gives satisfactory results
for the purpose of interpreting the data in Ref. 2.

In Sec. II we provide the general formalism for
obtaining a series expansion which is exact in the
magnetic field. The formalism described is actual-
ly more general than for the Heisenberg model, and
is applicable for any Hamiltonian composed of two
terms that commute’ (e. g., exchange term and
Zeeman term).

In Sec. III the calculation is carried out in detail
for the classical approximation to the Heisenberg
model, and in Sec. IV an alternate treatment for
low magnetic fields is given.

II. GENERAL FORMALISM

A. Generalized Expansion

Consider a system governed by the Hamiltonian
3C of the form

-,}C:JCI'FZCz, (2' 1)
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where 3G, is to be treated as a perturbation and’

3¢y, 3¢,]=0. (2.2)

The quantum-mechanical statistical average of
an operator @ is given by

Tr{de™} 1

(G>=—T;{;-m' y BEgg - (2.3)

Let us now assume that (@) can be expanded in
the following way:

(@)= éam(-}cz, B3¢) L# B, (2.4)

where the a,,(3C;, B¥C,), to be determined, satisfy
the homogeneity relation

am(7\3ca ’ B3C 1)= Rm“m(‘wz, B'}CI) . (2« 5)
Since, from (2. 1) and (2. 2),
e B% - g B2 8%y (2.6)

it follows that

_ Zeol(= 1)*/k1] Tr{a3ce "1} g*
(@)= 5= ol (= 1)7/11] Tr{3cte P} g7 ° 2.7

Equating the right-hand sides of (2.4) and (2. 7),
and multiplying through by the denominator of
(2.17), we obtain

S (=1)F . -8
2 g Triarie "}

© © L+m
=Z> E (_ 1) B“m am("(fa, B}Cl)

10 meo M Il1

XTr{xe® 1}, (2.8)

Equating terms of the same order in 3C,, we obtain

Tefasie e 3 (¥ ) oo, pie) el 70",

(2.9)
We now introduce the quantities
_ Triesg ™1
ve(@)= WI}—}‘ (2.10)
and
TriicGe "1} (2.11)

R = el
Then from (2. 9)
L
a,(3Cp, B¥Cy)= (@) - 2 (l ) Qg (3Co, BIC) Ky

1=1

(2.12)
Equation (2. 12) gives a recursion relation for the
a,. The same relation has been obtained by Stanley
and Kaplan® for the case 3¢,=0.

B. Specialization to Heisenberg Model

For an isotropic Heisenberg ferromagnet in the
presence of a magnetic field H, the Hamiltonian is

8
given by equation (2. 1) with
m1=—guBH; 8¢ (2.13)
and

where H is the magnetic field, pjy is the Bohr mag-
neton, g is the g factor, and —-J;; is the exchange
energy between parallel spins on sites ¢ and j.

We will consider only nearest-neighbor interac-
tions, i.e.,

d;; = dJ for nearest neighbors

= 0 otherwise. (2.15)
In this case
Sp=-J 2 Si° 8, (2.16)

(i4)

where J;;, is a summation over all different pairs
of nearest neighbors.

C. Evaluation of the Expansion Coefficients

To obtain the expansion coefficients a, we first
evaluate p, and v,. From Eqs. (2.11) and (2. 16)

Tr S0 8 ) e %
= (=J) 4%‘:{;‘(@;)—4 .

With each pair of spins g; , g, we can associate a
line between sites ¢ and j. Thus each term in p,
of the form

Tr{(gi * 's’j)-- : (gm : ‘gn)e'ﬂi‘ﬁ}

Tr{e -8 ’rlT ’

(2.17)

(-J)

(2.18)

with [ pairs in the trace, is associated with a dia-
gram containing / lines. Denoting such a diagram
by d, we have

ux=(—J)’?uz(d), (2. 19)
where
-5 TEC B G B0 g

and the summation }, is over all the combinations
of pairs @j) that correspond to the given diagram.
In a similar fashion one can represent

ve(@)= (—J)"§V‘§(d*). (2.21)
The diagrams here are denoted by d* since in addi-
tion to the lines for each pair of spins 's’;, -§, they
contain an additional symbol corresponding to the
operator @; e.g., wavy lines for operators @ that
involve two sites (e.g., for §,° $,, the two-spin
correlation function) and cvosses for one-site
operators (e.g., for 87, the magnetization). Fur-
ther, we will write v,(d*) instead of vZ(d*) for the
sake of brevity.
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Substituting (2. 19) and (2. 21) into (2. 12) we have

(€5, BICy)= (- J)' 2 apld¥), (2.22)
d*
where
k
ay(d*) = v,(d*) -2 (f) 2 ak-z(df) ki(d,),
1=1 d;‘ da

X,
Wiudy=d"

(2.23)

It can be proved by induction (Appendix A) that
a,(d*)= 0 for diagrams d* such that there are two
diagrams d¥and d, which satisfy both

d*=d¥Ud, (2.24)

and
(d*)=(df)(dp. (2. 25)

In particular a,(d*)=0 for all disconnected dia-
grams,

D. The Approximations
1. Classical Approximation

In computing (§; * $;,,) and ($?) we treat the
spins as classical magnetic moments of strength
guph[S(S+1)]Y2 We feel that that this is quite a
reasonable approximation for EuO, for which

-1
=3,

2. Third-order Truncation

The primary aim of the present work is to cal-
culate the H dependence of (§;* §;,,) and (S5 at T
=4T.. In evaluating (3, * §;,,) and (s{) from Eq.
(2. 4) one obtains a series whose successive terms
involve successive powers of (To/T). To obtain
an accuracy of several percent or better in (§;* §,)
or (sf) at T 24T, it is sufficient [cf. Figs. 1 and
2] to keep in the series (2.4) only terms up to or-
der (T¢/T) .

III. RESULTS FOR § = > HEISENBERG FERROMAGNET
WITH fcc LATTICE

All calculations were carried out for a fcc lattice
corresponding to the magnetic lattice of EuO.
The quantities calculated were

o(H, T)=(s5/[S(S+1)]'/2, (3.1)

NH, T)=(3;° $;,/5(+1), (3.2)
and the factor A defined by the relation

nH, T)-n(0, T)=AH, T)o*H, T). (3.3)

The reader will note that at T>T., A(H,T)=1 for
mean-field theory (m.f.t.). Thusthedeviationof A
from unity is a measure of departures from m.{.t.
Appendix B gives the formulas for (i) p,(d),
(ii) v,(@*) for @= (§;+ §,,)), and (iii) v,(d@**) for
a=(sh.
The results of the calculations for EuO (T ;=69 K)
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are shown in Figs. 1-3. Examination of Fig. 3
shows that the factor A(H, T') is approximately H
independent at low fields where 0 < 1. In other
words, at low fields n(H)- 71(0) is nearly propor-
tional to o2(H). At T24T,, the proportionality
constant A is only slightly smaller than 1.
The typical errors shown in Figs. 1 and 2 repre-

sent the magnitude of the term of order (T./ T)3,

IV. ALTERNATIVE TREATMENTS FOR LOW FIELDS

The numerical calculations of the preceding sec-
tion indicate that at low magnetic fields, where o
is small compared to unity, the field dependence of
7 is given by Eq. (3.3), where A(H, T) is nearly
independent of H but does depend on T/T.. This
result will now be rederived by two different meth-
ods. The first method is based on the fact that the
exchange magnetostriction of a ferromagnet (i.e.,
the change in volume due to the exchange interac-
tion) can be expressed: (i) as a function of 7 and,
(ii) as a function of 0. By equating the two expres-
sions one obtains a relation between 7(H) - 1(0) and
0. This relation is equivalent to Eq. (3. 3), and
it also allows an evaluation of the parameter A as
a function of T/T¢. In order to illustrate the pro-
cedure involved in this method of deriving Eq. (3. 3),
we first treat in Sec. IV A the case T>T,. In
Sec. IV B the procedure is extended to any T above

0.5 —
EuO0 T =69K
T (K) |241.5|291.5|345|483|690
0.4/~ | Typicale,) 17 | 1.2 |0.8]|0.3]0.

o 100 200 300 400
H ( kOe)

FIG. 1. Reduced magnetization o= (8%)/S vs magnetic
field H for a fcc classical Heisenberg ferromagnet with
T.=69 K.
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Tc. A second method of deriving Eq. (3.3) from
a purely thermodynamic argument is presented in
Sec. IVC. Numerical results for A as a function
of T/T. are given in Sec. IVD.

A T>T,

We consider an isotropic ferromagnet with near-
est-neighbor interaction only. At T>T,, the mag-
netization at low fields is given by the Curie-Weiss
law

M=CH/(T-6), (4.1)
where
0=2JS(S+1)/3k (4.2)

is the Curie-Weiss temperature, z is the number
of nearest neighbors, and

C=Ng2uis@S+1)/3k. (4.3)

Here N is the number of magnetic ions per cm?.

When a magnetic field is applied, the volume V
changes slightly. The change in V obeys one of
Maxwell’s relations

)74 aM
()2,
9H/p,r 9P Jr,u
0 N—T T T T T T 1 T
Eu0 T =69 K
H =500 kOe T/Te |4]6]8]10
| Typical ;o —
0.20 200 era %) |3.5]1.5|05(0.3
0.15 .
300
m(H,T)
0.10f -
200
150
0.05 100 -
50
0
oln 1 | l | | | | ]
3 4 5 7 8 9 10

6
T/ Te
| | 1 | 1 1
200 300 400 500 600 700

T(K)

F’IG.’Z. Reduced two-spin correlation function 7
= (§;*84,1)/S% vs T for various values of H. The results
are for a fcc classical Heisenberg ferromagnet.
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T I T

1.0L T=690K _
=09 _
T

0.8} EuO _

Tc =69K
0

L | I
100 200 300 400
H (kOe)

FIG. 3. Dependence of the parameter A(H, T), defined
by Eq. (3.3), on H at several values of T. The results

are for a fcc classical Heisenberg ferromagnet with T¢
=69K.

where P is the pressure. In order to evaluate the
right-hand side of Eq. (4.4) we note that the ex-
change constant J depends on V. Since V depends
on P, a change in P will result in a change inJ.
The change in J will result in a change of 6 [see Eq.
(4. 2)], which will lead to a change in M [see Eq.
(4.1)]. Mathematically,

7 -(58) (63)G7) G5 4.9
From Eqs. (4.1), (4.4), and (4. 5)

e ()GH)(5R) . wo
but

(g>r,ﬂz -VKr,y, (4.7)

where Krp y is the compressibility at constant 7 and
H. Also, from Eqgs. (4.2) and (4. 3)

96 6 _ =zC

ara (@9
Therefore,

v (2VK )(ﬂ) C*H

aH—(N—z—E‘ig 25)\av) Toep (4.9)

Integrating and using Eq. (4. 1), one obtains the
volume change at constant T and P

v (51) ()
VH)-V(0)= (m I3 M=, (4.10)
But M =Ngpug(s?), so that
a
V(H) - V(0)=NVZSK 1 (%) o2, (4.11)
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where 0= (§%)/S is the reduced magnetization.
Equation (4. 11) relates the volume magnetostric-
tion to 0. A second relation for V(H) - V(0) in
terms of 7 is obtained from the work of Callen and
Callen, * who showed that the volume magnetostric-
tion AV/V is proportional to 7. The proportionality
constant can be obtained from Eq. (21) of Argyle
et al.,®viz.,

AV aJ - -
Vv = %NZKT,H<W) (8¢ Sip- (4.12)
The same proportionality constant can also be cal-
culated by considering the exchange magnetostric-
tion AV at T=H=P=0. Under these conditions AV
is obtained by minimizing the energy

2
==3Nz(8;* $ia1) [J(V°)+ AV(%{)} %I?T% '
(4.13)

Minimizing Eq. (4. 13) with respect to AV leads to
Eq. (4.12).
From Eq. (4.12)

ViH) - V(0)- 2NVaSKr, () Ine) -n0)],  (4.14)
where 7= (51' '§¢+1)/Sz. Equating Eqs. (4.11) and
(4. 14) gives

n(H)-n(0)=0> (4.15)

Equation (4. 15) is equivalent to Eq. (3.3) with A=1.
The result A=1 in the limit 7 > T is expected
physically.

B. Any T Above T,

At any T above T the magnetization at low fields
(0 «< 1) can be written

M=CH/(T - 6%), (4. 16)
where
0*=6f (4.17)

is a new temperature which is equal to the Curie-
Weiss temperature 6 multiplied by a correction
factor f. The factor f is a function of T/T. (or
T/J). Inthe limit T/To—, f= 1.

Following the same procedure which was used
to derive Eq. (4. 11) one obtains

V@H)-V(0)= %NVzSzKT'H(-g%) o2f <1+ Zi_il;> ,

(4.18)

where the derivative 8 1nf/5InJ is evaluated at
constant 7. Note that the right-hand side of Eq.
(4. 18) differs from that of Eq. (4.11) by the factor
f(1+alnf/alnJ). Since Eq. (4.14) is not restricted
to T> T, a relation between 1 and o can be ob-
tained by equating the right-hand sides of Eqgs.
(4.18) and (4.14). This gives

2331

n(H)-n(0)=Ac?, (4.19)
where

ar (10 200) (4.20)

C. Thermodynamic Treatment

Equation (4. 20) can also be derived from purely
thermodynamic arguments. We consider the ener-
gy U, as defined by Kittel. 10 This energy is given
by
Ugy= <zc>=<—J 2 $;+8;-gusHY s:>, (4.21)

s i
or, since there are 3Nz independent pairs (ij) of
nearest neighbors,

UA=_%NZJ<-S.£. g1:,1>—MH. (4.22)
Therefore,

dU,=-3NzJd(§;* S4,)—MdH -HdM . (4.22)
But

dU,=Tds -MdH, (4.23)
where s is the entropy. Therefore,

Tds=—-3$NzJd(S;* $;,0)- HAM . (4.24)
Hence

(i)t %),

(4. 25)

where we used Eq. (4.16), which applies when
0<«<1and T>T;. Using the Maxwell relation

(%), ()
aT ), \@eH/
and Eqs. (4.16), (4.17), and (4. 25), one obtains
after some algebra

(a@i'gtﬁ)> _ __2CHE* (1_31nf
oH r NzJ(T - 6%y 8 InT

From Eqgs. (4.8), (4.17), and (4. 27),

(a(’s’,-- 's’,-“)) ____2CHf ,_2lnf
oH r N%g2ul(T - 6%)° 91nT) *

(4. 26)

). (4.27)

(4. 28)
Integrating with respect to H and using Eq. (4.16)
- - - _M¥ 9 1nf
@it Sipu- G 81+1>o*m (1———3 lnT)
(4. 29)
or
_ 3 1Inf >
n(H)-n(0)=0% (1 ST ) - (4. 30)
Since f is a function of T/J,
9lnf -23Inf 4. 31)

9InT 9dlnd ’
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so that

n(H)-n(0)= 0% (1%%2—{;) ,

which is Eq. (4. 20).
D. Numerical Results

Equation (4. 20) shows that the coefficient A in
Eqgs. (3. 3) or (4. 19) is related to the factor f, which
is a function of T/T; (or T/J). The factor f can
be evaluated if the zero-field susceptibility x=C/
(T -f6) is known., High-temperature series ex-
pansions for x were given by several authors. In
particular, expressions for a fcc lattice were given
by Rushbrooke and Wood!! and by Domb and Sykes®
for an arbitrary S and up to order (J/kT).. Two
additional terms, up to order (J/kT)“, were given
by Wood and Rushbrooke for the case S= o, 3

Figures 4 and 5 show f and A as a function of
T/Tc for a fcc lattice and S=», These curves
were calculated from the Wood-Rushbrooke series
expansion for x. 3 The solid curves were obtained
using the expansion up to order (J/kT)%, i.e., a
nine-term expansion. To get an idea of the accur-
acy of these results, we have also calculated
f(T/Tc) and A(T/T.) from the expansion for ¥,
keeping terms only up to order (J/kT)® or (J/RT)
These are shown in Figs. 4 and 5 as a dashed, and
a dashed-dot lines, respectively. It appears that
the nine-term expansion for x leads to values of A
which are accurate to within ~1% at T/T; > 4.
Figure 5 also shows some values for A which
were obtained from the calculations in Sec. III.

1.0 T
m -
=~
% 09|
n
- b
N /\ 5 TERMS 2
0.8 1 | 1 | 1 | 1 1 |
0 2 4 6 8 10
/T,

FIG. 4. T dependence of the factor fin Eq. (4.17).
These results for a fcc classical Heisenberg ferromagnet
were obtained using Wood-Rushbrooke’s series expansion
for y. The various curves correspond to different trun-
cations of this series,

STANLEY, AND SHAPIRA 8
T I T T T T T T T
10t 4
09t
08} 9 TERMS
A | 7 TERMS |
5 TERMS
07} -
[ || eRESULTS OF sECTION Il ]
0.6F / .
0.5 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10

T/Te

FIG. 5. T dependence of the parameter A in Egs.
(4.19) and (4.20). The various curves were obtained from
the results in Fig, 4. The dots represent the numerical
results of Sec. III for the parameter A at low fields
(H =50 kOe).
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APPENDIX A. PROOF OF “LINKED-CLUSTER” THEOREM

In the text it was stated that one can prove by in-
duction from (3) that a,(d*)=0 for diagrams d*
which may be partitioned d*=d*Ud, such that (dy)
=(d}(d,). This factorization occurs (even quan-
tum mechanically) for all disconnected diagrams.

Proof: a,;(d*)=0 for =2 by inspection. As-
sume, then, that a;(d*)=0foralll<A-1, and
consider Equation (2. 23) for 7= A:

ak(d:) B a-e(@s),

aA(d*)=vA(d*)—§(£) >

da 'db

(A1)
where 2,%, denotes a summation on all partitions
d*=d¥ud,of d* such that d} has % lines and d, has
A—-F lines. Now write the summation $A7(+++)
in Equation (A1) as the sum of three terms:

11-1
term L =3, (*°),
k=1

term II, = (k=1 term),

A-1
termIIL = 25 (+++),
k=1 1'1

where I;=number of straight lines in d7.
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Now term III= 0 since a,(d})=0for I,+1<k<A T 0.1" m 30 N 0.1" x
-1. 302 N *
term II (A) @9 o dy) 21 = > = 313 N Lt
erm l= all 1 “12 2/ * .

1 22 < AR 304" A 2 M =
w.here l,=A-1,= nufn.bexr of str'iight lines ind,, 3| = 2t m 3.05% A 2 2** Sy
sanE;i)alt)other partitioning of d* are such that 32 & po* o 3 16* AL o 3 X

kR
The only nonzero a,(dY) in term I are those for 33 A 2.3 = 3.7 O3 3 % =
which all the lines of d* are contained ind}. But 3.4 A 2.4 N\ 318" M 3.0% a
for these cases 35 N 2.5* X 3.19* M e
3.3
A-F — 2.6 AN 3.20* +
)= (M7 ) @ b a0, a2) 41 = . . 3.4%
1, 2 1 ap = 2.7 N 321 A 35% X
where d, is such that d;“u dc=dr. 4'3 _<< 3¢ o= 3'22: i 3.6% X
) L 3.23 ’
Observe now that a4 N 3% = 3.7% X
A\(A-R\ _(A\(L a5 N 33 = 3.8% N
= (A3)

L YARA 1,/\k 46 R 3.4" & 3.9% N

and also that 47 A 3.5% AN

7* y 48 A 365 M

va@=(1) v @D, o). 0 R R

+*

Hence Equation (Al) may be written 4.10 M 3.8" A

411 + 3.9* &

@ (d*)= ( )#zz(d ook, (A5) 412 A 3.10* &
where FIG. 6. Labeling of various graphs which appear in

Appendix B.

foe}= th(dr)- atl(d’f )

1o wa(3.1)=[X5+ 3 (X, - X5 [S(S+ DI,
-z ( ),?d () biyx(@)=0. (A6) 1s(3. 2)= 3X,[X, X+ 3 (1- %) (X, - Xp)] [S(S + P,
1a(3.3)=6[X3+ 51 (1-X,)°) [S(S+ 1))3,
u3(3.4) 6X3X,[S(S+1))°,
1g(3.5)=6X3X2[S(S+1))°,

In this appendix we give all the quantities neces- pa(4.1)=[X3+ 3(X, - X )P+ § (1- 2X,+ X,)°]
sary for the four-term expansion of 77 and 0. The % [S S+ 1)]4
diagrams are numbered according to Fig. 6. The ’
numbers of diagrams d* and d** that can be placed Le(4.2)=4X XX 4+ 3 (Xo— X)) (X, - X3)]
on the fcc lattice is given in Table I. 4
To shorten the notation, let us define the follow- x[s6+ 1Y,
ing quantities: La(4.3)=6[X2X,+ X, (1-X,) (Xz-X,)

+5(1- X)2(1- 2X,+ X)) [ S(S+ 1))*,
py(4.4)= 12X3[X5+ 3 (X, - Xo)*) [ S(S+ 1)),
14(4. 5)= 12X X, [XsX,+ 3 (1= X)X, — X))
(B2) x[S(S+1)]%,
Ba(4.6)=12X5[X, X, + 3 (X, - X,) (1 - X5)]

Thus «,(d*)=0 and the proof is complete.

APPENDIX B. EVALUATION OF EXPANSION COEFFICIENTS

X,(2)= (—‘L;I(z>)/z(z), i=1,2,8-++,  (Bl)

where

. 1/2
I(z)Efl‘fr-——Slzml'z and z=g“5ﬁ[2$+1)] ",

Suppressing z in the following (for brevity), the co-

efficients in the expansion are given by x[S(S+1)]*,
pi(1.1)=X[s(s+ )], By(4.1)= 12[X, X5+ 3 (X, - X5)P][S(S + 1)]*,
pa(2. 1)=[X 3+ 3(1- X,)?] [ S(S + 1)), 14(4. 8)=24X,[X5 X, + 31X, - X;) (1- X,)7)

(2. 2)= 2X2X,[S(S+ 1)]?, x[S(S+1))*,
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TABLE I. Numbers of diagrams d* and d** that can be
placed on an fcc lattice,

Diagram  No. Diagram No. Diagram  No,

0.1%* 1 3.7 110 0, 1** 1
3.8* 110
1.1* 1 3. 9% 4 1, 1%* 12
1.2% 22 3.10* 4
3.11* 234 2, 1*%* 12
2,.1%* 1 3.12% 234 2, 2%* 66
2, 2% 22 3.13* 234 2, 3k* 132
2,3* 22 3.14% 40
2, 4% 4 3.15% 80 3, 1% 12
2, 5% 110 3.16* 40 3, 2%* 66
2,6% 234 3.17* 22 3, 3%* 132
2, 7% 234 3.18* 2490 3, 4** 132
3.19* 2450 3, 5** 24
3.1% 1 3.20* 330 3. 6%* 220
3.2% 22 3.21%* 1130 3, T** 660
3.3* 22 3.22%* 1130 3, 8%* 1404
3.4% 22 3.23* 2300 3.9%* 1404
3. 5% 234
3.6* 234

kg4, 9)=24[X] + 5 (1-X,)4[S(S+ 1)),

1e(4.10)= 24 X2 X3[S(S+ 1)]4,

Ba(4.11)= 24 X1 X,[SS+ 1)),

pa(4.12)= 24 X3 X, X,[S(S+ 1)]%.
The coefficients v,(d*) for @=(§;* §,,,) are
V(1. 1%) = py(2. 1),
va(2. 1%)= pg(3. 1),
V(2. 3%)=§ p4(3. 2),
V(2. 5%)= 5 14(3. 4),
V(2. T%)= 5 114(3. 5),
vs(3.2%)=§ p(4.2),
v3(3. 4%)= 3 (4. 3),
v3(3.6%) =3 (4. 4),
V(3. 8%) =% 14(4.6),
vg(3. 10%) = 3p1,(4.7),
v3(3. 12%)= §u4(4. 5),
ve(3. 14*%)=¢ 14(4.8),
vs(3. 16%)= % 14(4.8),

vo(0. 1%)= (1. 1),
v1(1. 2%)=3 1,(2. 2),
va(2. 2%)= §H3(3- 2),
V(2. 4%)= %I—ls(3- 3),
V(2. 6%)= %#3(3- 5),
vg(3. 1%)= n,(4. 1),
vs(3. 3%)= {14(4. 2),
V(3. 5%)= 5 14(4. 4),
V(3. %)= 14(4.6),
vs(3. 9%)= i K4(4.7),
b(3. 11%)= 4 1,(4. 5),
vs(3. 13%)= 3 u4(4. 5),
V(3. 15%) =5 14(4. 8),

| oo

vs(3. 17*)= 3 14(4.9),
v4(3. 19%)= § p,(4. 10),
Va(3. 21%)=  p4(4. 12),
v5(3. 23%) = § (4. 12).
The coefficients v,(d**) for @=(${) are,
V(0. 1¥%)= X [S(S+ 1)]V/2,
vyl 1¥%)= X, X,[S(S + 1)]*/2,
V(2. 1¥%) = [ X, X5+ 3(1 - X,) (X, - X,)] [S(S+ 1)]¥/2,
Vy(2. 2%%)= 2 X X2[S(S+1)]%/2,
vy(2.3%%)= 2X, X5[S(S+ 1))%/2,
v(3. 1%%)= [ X, X5+ 3 (X, - X5) (X2 - X)) [S(S + 1)]"/2,
v3(3. 2%%)= 3[X X, X1+ 3 X, (1- X,) (X, - X4)]
x[S(S+1)]"2,
vs(3. 3%%)= 3[X3 X3+ 5 Xp(1- X,) (X; - X)) [S(S+1)]"/2
vy(3.4%%)= 3[X X%+ 1 X,(X, - X,)?] [S(S+1)]"/2,
vs(3. 5%*%)= 6 [XE X3+ 3 (1- Xp)? (X, - X5)] [S(S+ 1)]"?,
vs(3.6%%)=8X3X,[S(S+1)]"/2,
v3(3. T¥*)= B X3 X, X,[S(S+1)]"/2,
vs(3.8%%)=6X,X3[S(S+1)]"/2,
v3(3. 9%*%)= 6 X2X, X4 [S(S+1)]"/2.

vs(3. 18%)= S (4. 10),
V(3. 20%) = § py(4. 11),
v3(3. 22%)= § p,(4. 12),

As an example of calculation of a,(d*) let us cal-
culate ag(3.3*) and a4(3. 22*)

(3. 3*%)=v4(3. 3%) - 8 [Ctz(z. 1*)+d,(2. 2*)] 1y(1.1)
1
(3 a1, 19 2. 20+ @u(1. 299 gtz 1)

—(2) 0(0. 1%) p14(3. 2)
(B3)
y(3. 22%)= vy(3. 22%) -(f) [2y(2. 5%)

+20,(2. T 1y(1. 1) - (g )a,(l. 2%)

x[2p3(1. 1)+ py(2. 2)]

- (g )ao(o- 1%)py(1.1) pa(2.2).  (B4)

*Work forms a portion of the Ph.D. thesis of one of us
(H. B.) to be submitted to the MIT Physics Dept. Work
supported by NSF, ONR, and AFOSR.
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