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Abstract

We study a three-dimensional system of particles interacting via spherically symmetric pair
potentials consisting of several discontinuous steps. We show that at certain values of the pa-
rameters describing the potential, the system has three first-order phase transitions between fluids
of different densities ending in three critical points.
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Much attention has been focused on the topic of liquid-liquid phase transitions [1].
Recently, a liquid-liquid phase transition was found experimentally in phosphorus [2].
Liquid-liquid phase transitions also can exist in other materials with tetrahedral
symmetry such as carbon [3,4], silica, [5] and silicon [6,7].

The possibility of a sharp amorphous—amorphous transition between low-density
amorphous ice (LDA) and high-density amorphous ice (HDA) has been known for
a long time [8]. Computer simulations of the ST2 water model [9] suggest that the
transition line between LDA and HDA can be extended to higher temperatures above
the glass transition, where it would become a first-order liquid-liquid phase transi-
tion line ending at a critical point at about 200 K [10]. However, in this temperature
range, water immediately crystallizes and this phase transition cannot be observed in
direct experiments. More recently, a distinct amorphous phase of water, called very
high-density amorphous ice, has been observed experimentally [11-13]. New simula-
tions of the ST2 model [14] in the restricted NPT ensemble suggest that instead of one
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previously observed liquid—liquid phase transition, there might be three liquid—liquid
phase transition lines between four liquids with different densities roughly correspond-
ing to the densities of the three known amorphous ices. It has been suggested [15] that
systems with rich polymorphic solid phase diagrams may have several liquid phases
with local particle arrangements corresponding to various crystalline structures.

We propose here a simple model with at least two liquid—liquid phase transitions in
addition to the known liquid—gas phase transition. This model is based on the double
step soft-core potential model previously used to study systems with two fluid—fluid
critical points [16—-19]. Two fluid—fluid critical points were also observed by Monte
Carlo simulations of a similar model with a continuous soft-core potential [20].

We perform constant volume J collision-driven molecular dynamic simulations
[17,18,21] on a system of N = 1728 spherically symmetric particles interacting via
the discontinuous pair potential

(o0 for r <a,
U, fora<r<b;,
Ur)y=< U for by <r < by, (1)
-Uy forb,<r<ce,
0 forc <r,

where U(r) is a potential energy of a pair of particles at distance », Uy > 0 is
the energy of attraction, U; = 3Uy, U, = Uy, by = l.4a, by = 2.1a, and ¢ = 2.8a.
(see Fig. 1, inset). We keep temperature 7 constant using a modified Berendsen
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Fig. 1. Isotherms and critical points for the system of spherically symmetric particles interacting via the
potential shown as an inset.
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method [22] periodically (after each N collisions) rescaling the velocities of all the
particles so that the average kinetic energy approaches the desired value. To speed up
the simulation, we achieve this effect by rescaling the unit of time and parameter Uy,
so that the numerical values of the velocities remain unchanged and the collision table
is preserved. We compute pressure P the same way as in Refs. [16,17], averaging it
over 2 x 10*(ma®/U4)"? time units, where m is particle mass. Throughout this paper,
we measure density, pressure, and temperature in units of a3, Uya—>, and U,/ks,
respectively, where kg is the Boltzmann constant. We investigate several state points
for systems with different densities p = N/V along several isotherms (see Fig. 1)
and find three distinct sets of van Der Waals loops, each ending in a specific critical
point characterized by an isotherm with an inflection point. Note that the negatively
sloped regime of the isotherms is an artifact of the constant volume simulations with
periodic boundary conditions. It is caused by the surface tension of the fluctuating
phase boundary. For large enough system, it splits into several regimes corresponding
to different surface topology: planar, cylindrical, and spherical causing apparent jumps
on the isotherms which can be mistakenly identified as separate phase transitions. We
observe these regimes below the gas—liquid critical point C;. We check that the system
remains homogeneous in the vicinity of the critical points C, and Cs.

Note that the isotherm for 7' = 0.60 almost entirely corresponds to a stretched
metastable liquid with P < 0. In addition, at this temperature, the system spontaneously
crystallizes for p > 0.23. Nevertheless, we are able to find equilibrium liquid pressures
by averaging pressure before the crystallization onset, using the same technique as in
Ref. [17]. We quench five independent configurations equilibrated at 7=0.9 to 7=0.6,
skip initial 800 time units (the correlation time at this temperature), and average the
pressure until the onset of crystallization, indicated by the sharp decrease of potential
energy. The average existence time (¢) of the metastable liquid is (f) = 1.5 x 10* time
units at p=0.23 , (1) =4.5x 10* at p=0.25, (t) =1.5x 10% at p=0.27, and (¢) = 10°
at p = 0.30. The error bars of the pressure are assumed to be equal to the standard
deviation of the pressure measurements for five independent runs.

Accordingly, we find a liquid-gas critical point C; at 77=1.10, P;=0.014, p;=0.054,
a stable high-density critical point C, at 7, =0.75, P, =0.0056, p, =0.152, and a third
very high-density critical point C5 at 75 = 0.60, P; = —0.014, p3 = 0.245. The third
critical point is metastable with respect to gas—crystal coexistence, but by varying the
parameters of the potential [19], it may be possible to shift the position of the third
critical point to a stable region of the phase diagram.

Fig. 2 shows radial distribution functions for the three liquids at temperature 7=0.59,
corresponding to the low-density liquid (LDL) with density 0.098a~3, high-density
liquid (HDL) with density 0.186a~>, very high-density liquid (VHDL) with den-
sity 0.272a 2 and a crystal with density 0.296a 3. One can see a dramatic difference
between the structures of LDL and HDL.

Integrating radial distribution function for LDL, we find that 11 neighbors stay in
the attractive well, almost not penetrating into soft cores.

In contrast, in HDL, particles penetrate into a larger soft core. The average number of
neighbors in the smaller soft core is 0.6. The average number of neighbors in the larger
soft core is 2.7. The number of particles in the attractive well also increases to 17.
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Fig. 2. Radial distribution functions for a system shown in Fig. 1 at temperature 7 = 0.59 at four different
densities, corresponding to three different liquids and a crystal.

The difference between the structures of HDL and VHDL is less pronounced. Nev-
ertheless, one can see the development of an extra peak for VHDL at a distance 3.5a.
In addition, the number of particles in the smaller and larger soft cores increases to 1
and 5, respectively, and the number of particles in the attractive well increases to 23.

The choice of parameters is motivated by our preliminary studies of simpler systems
with U; =00, which have a gas—liquid critical point C; (T'=1.06, P=0.013, p=0.052)
and a stable liquid-liquid critical point C» (T =0.67, P=10.059, p=0.144) (see
Fig. 3). The potential of this system is the soft-core potential [16], with b; playing the
role of the hard core and b, playing the role of the soft core. Note that the positions of
these critical points are very similar to those of C; and C, in the three-step potential.
Thus, adding a second soft core a < by < b, to the potential, creates a third critical
point at higher densities without a significant change in the position of the two original
critical points.

One can speculate that adding more steps to a potential can create more critical points
at different densities corresponding to the interparticle distances of these steps if the
parameters of these steps are carefully selected. However, if the steps become much
smaller than kT, their individual effects become negligible and the phase diagram
of such a system converges to the phase diagram of a system with a continuous
potential which these discontinuous potentials approximate. We test our collision-driven
molecular dynamic algorithm approximating the continuous Gaussian repulsive rump
[23] and the linear repulsive rump [20] by the step-functions of n < 256 steps and
observe an excellent quantitative agreement, including density anomalies associated
with these potentials. We find that the pressure P,(V,T) for a potential with n steps
converges to the corresponding pressure for a continuous potential Poo(V,T) as 1/n?,
while the diffusion coefficient converges as 1/n.
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Fig. 3. Isotherms and critical points for temperatures 7 = 1.5, 1.45, 1.4, 1.35, 1.30, 1.25, 1.20, 1.15, 1.10,
1.05, 1.00, 0.95, 0.90, 0.85, 0.80, 0.75, 0.70, 0.65, 0.60 for a simplified potential shown in the inset with
one soft core b, and a hard core by = 1.4a. Isotherms for 7 > 1.00 are computed only for small densi-
ties, while isotherms for 7' < 1.00 are computed only for large densities. The isotherm corresponding to
T =1.00 is computed for the entire range of densities. The systems for p > 0.23 spontaneously crystallize at
T < 0.75 into crystalline structures similar to the crystalline structure of the system with two soft cores shown
in Fig. 2.

In summary, we show that systems interacting via spherically symmetric potentials
with three characteristic repulsive distances playing the role of soft cores may have
three liquid phases of three increasing densities characterized by the penetration of
particles into a soft core of smaller diameter.

We thank V. V. Brazhkin, A. Geiger, G. Franzese, T. Loerting, and A. Skibinsky
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