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1. - Introduction

Statistical physics has undergone many changes in emphasis during the last few
* decades. The seminal works of the '60s and *70s on critical phenomena [1] and of the
80s and "90s on fractal geometry [2] provided physicists with a new set of tools to study
nature [3, 4]. Fields such as biophysics, medicine, geomorphology, geology, evolution,
ecology or meteorology are now common areas of application of statistical physies.
%o In particular, several research groups have turned their attention to problems in
¢onomics [5, 6] and finance [7-13]. In this article, we extend the study of ref. [6] on the
owth rate of manufacturing companies. One motivation for the present study is the
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considerable recent interest in economics in developing a richer theory of the
firm [14-32]. In standard microeconomic theory, a firm is viewed as a production
function for transforming inputs such as labor, capital, and materials into
output [16; 21, 27]. When dynamiecs are incorporated into the mode), the source of the
link between production in one period and production in another arises because of
investment in durable, physical capital and beeause of technological change (which in
turn can arise from investments in research .and development). Recent work on firm
dynamics emphasizes the effect of how firms learn over time about their efficiency
relative to competitors [20, 33, 34]. The production dynamics captured in these models
are not, however, the only source of actual firm dynamics. Most notably, the existing
models do mnot account for the time needed to assemble the organizational
infrastructure needed to support the scale of production that typifies modern
corporations. '

We studied all United States (US) manufacturing publiely-traded firms from 1974
to 1993. The source of our data is Compustat which is a database on all publicly-traded
firms in the US. Compustat obtains this information from reports that publicly traded
companies must file with the US Securities and Exchange Commission. The database
contains 2 large amount of information on each company. Among the items included are
“gales,” “cost of goods sold,” “assets,” “number of employees,” and “property, plant &
equipment.”

Another item provided for each company is the Standard Industrial Classification
(SIC) code. In principle, two companies in the same primary SIC code are in the same
market; that is, they compete with each other. In practice, defining markets is
extremely difficult [35). More important for our analysis, virtually all modern firms sell
in more than one market. Companies that operate in different markets do report some
disaggregated data on the different activities. For example, while Philip Morris was
originally a tobacco producer, it is also a major seller of food produets (since its
acquisition of General Foods) and of beer (since its acquisition of Miller Beer). Philip
Morris does report its sales of tobacco products, food products, and beer separately.
However, companies have considerable discretion in how to report information on their
different activities, and differences in their choices make it difficult to compare the
data across companies.

In this paper, the only use we make of the primary SIC codes in Compustat is to
restrict our attention to manufacturing firms. Specifically, we include in our sample all
firms - with a major SIC code from 2000-3999. We do not use the data from the
individual business segments of a firm, nor do we divide up the sample according to
SIC codes. We should ackriowledge that this choice is at odds with the mainstream of
economic analysis. In economics, what is commonly called the “theory of the firm” is
actually a theory of a business unit. To build on the Philip Morris example, economists
would likely not use a single model to predict the behavior of Philip Morris. At the very
Jeast, they would use one model for the tobaeco division, one for the food division, and
one for the beer division. Indeed, given the available data, they might construct a
completely separate model of, say, the sales of Maxwell House coffee. Absent any effect
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of the output of one of Philip Morris’ products on either the demand for or costs of its
other products, the models of the different components of the firm would be completely
separate. Because the standard model of the firm applies to business units, it does not
yield any prediction about the distribution of the size of actual, multi-divisional firms or
their growth rates.

On the other hand, the approach we take in this study is part of a distinguished
tradition. First, there is a large body of work by Economics Nobel laureate H.
Simon [22] and various co-authors that explored the stochastic properties of the
dynamies of firm growth. Also, in a widely cited article (that nonetheless has not had
much impact on mainstream economic analysis), R. Luecas, also 2 Nobel laureate,
suggests that the distribution of firm size depends on the distribution of managerial
ability in the economy rather than on the factors that determine size in the
conventional theory of the firm [23].

In summary, the objective of our study is to uncover empirical scaling regularities
about the growth of firms that could serve as a test of models for the growth of firms.
We find: i) the distribution of the logarithm of the growth rates for firms with
approximately the same size displays an exponential “tent-shaped” form, and i) the
fluctuations in the growth rates—measured by the width of this distribution—scale as
a power law with firm size. The width of the distribution has a tendency to grow with
time, but the shape of the distribution remains tent-shaped.

The paper is organized as follows: in sect. 2, we review the economies literature on
the growth of companies. In sect. 3, we present our empirical results for publicly-
traded US manufacturing companies. In sect. 4, we propose and discuss models
that shed some light on those results. Finally, in sect. 5, we present concluding
remarks and discuss questions raised by our results.

2, - Background

In 1931, the French economist Gibrat proposed a simple model to explain the
empirically observed size distribution of companies [14]. He made the following
assumptions: i) the growth rate R of a company is independent of its size (this
assumption is usually referred to by economists as the law of proportionate effect),
i) the successive growth rates of a company are uncorrelated in time, and iii) the

companies do not interact.
In mathematical form, Gibrat’s model is expressed by the stochastic process:

(1) S§+AL=St(1 +£t),

where S, . »; and S, are, respectively, the size of the company at times {t + At) and f, and
g, is an uncorrelated random number with some bounded distribution and variance
much smaller than one (usually assumed to be Gaussian). Hence log S, follows a simple
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random walk and, for sufficiently large time intervals 7>>Af, the growth rates

Sier
@  Re=Tg
are log-normally distributed. If we assume that all companies are born at
approximately the same time and have approximately the same initial size, then the
distribution of company sizes is also log-normal.

A considerable advantage of Gibrat’s model is that it yields testable hypotheses.
The law of proportionate effect implies that the mean growth rate and the fluctuations
of the growth rate are independent of size. In fact, however, the fluctuations of the
growth rate measured by the standard deviation o(S) decline with an inerease in firm
size. This was first observed by Singh and Whittington [36] and confirmed by
others [6, 37-41]. The negative relationship between growth fluctuations and size is not
surprising because large firms are likely to be more diversified. Singh and Whittington
state that the decline of the standard deviation with size is not as rapid as if the firms
congisted of independently operating subsidiary divisions. The latter would imply that
the relative standard deviation decays as o(S) ~ .S "2 [36]. This confirms the common-
sense view that the performance of different parts of a firm are related to each
other.

The situation for the mean growth rate is less clear. Singh and Whittington [36]
consider the assets of firms and observe that the mean growth rate increases glightly
with size. However, the work of Evans[37] and Hall [38], using the number of
employees to define the company’s size, suggests that the mean growth rate declines
slightly with size. Dunne et al. [39] emphasize the effect of the failure rate of firms and

~ the effect of the ownership status (single- or multi-unit firms) on the relation between

size and mean growth rate. They conclude that the mean growth rate is always
negatively related with size for single-unit firms; but for multi-unit firms, the growth
rate increases modestly with size because the reduction in their failure rates
pverwhelms a reduction in the growth of nonfailing firms [391.

Another testable implication of Gibrat’s law is that the growth rate of a firm is
uncorrelated in time. However, the empirical results in the literature are not
conclusive. Singh and Whittington [36] observe positive first-order correlations in the
1-year growth rate of a company (persistence of growth) whereas Hall [38] finds no
such correlations. The possibility of negative correlations (regression towards the
mean) has also been suggested [42, 43].

3. — Empirical results

In this section, we study the distribution of company sizes and growth rates. To do
so0, one problem that must be confronted is the definition of firm size. If all companies
produced the same good (steel, say), then we could use a physical measure of output, -
such as tons. We are, however, studying companies that produce different goods for
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which there is no common physical measure of output. An obvious solution to the
problem is to use the dollar value of output: the sales. A general alternative to
measuring the size of output is to measure input. Again, since eompanies produce
different goods, they use different inputs. However, virtually all companies have
employees.  As a result, some economists have used the number of employees as a
measure of firm size. Three other possibilities involve the dollar value of inputs, such as
the “cost of goods sold,” “property, plant & equipment,” or “assets.” As we discuss
below, we obtain similar results for all of these measures. We begin by describing the
growth rate of sales. To make the values of sales in different years comparable, we
adjust all values to 1987 dollars by the GNP price deflator.

Since the law of proportionate effects implies a- muitiplicative process for the
growth of companies, it is natural and more convenient to study the logarithm of sales. P
We thus define _ il

(3) S = In So

and the corresponding growth rate

4) r=lnRk;=In — !

where S, is the size of a company in a given year and S, its size the following year. L

31, Size distribution of publicly-traded companies. — Stanley et al. determined the S
size distribution of publicly-traded manufacturing companies in the US[44]. They )
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Fig. 1. — Number of publicly-traded manufacturing companies in the US for the period 1974-1993 | |
(right scale). Also shown is the number of companies entering the market and the number of
companies leaving (left scale).
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Fig, 2a. — Probability density of the logarithm of the sales for publicly-traded manufacturing
companies (with standard industrial classification index of 2000-3999) in the US for each of the
years in the 1974-1993 period. All the values for sales were adjusted to 1987 dollars by the GNP
price deflator. Also shown (solid circles) is the average over the 20 years. It is visually apparent
that the distribution is approximately stable over the period.
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Fig. 2b. — Probability density of the logarithm of sales for all the manufacturing companies, for the
companies entering the market (shifted by a factor of 1/10), and for the companies leaving the
market (shifted by a factor of 1/100), averaged over the 1974-1993 period. The distribution of new
companies can be described to first approximation by a log-normal while the other distributions
are better fitted by the expenential of a third-order polynomial. Notice that the distributions of all
companies and of dying companies are nearly identical. This suggests a nearly constant
dependence of the dying probability on size.
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Fig. 2¢. - Plot of the fraction of “dying” companies by size. We define this probability as the ratio
of the number of companies of a given size dying every year over the total number of companies of
that size. The horizontal straight line is a guide for the eye for companies with sales above 10°,

found that for 1993 the data fit to a good degree of approximation a log-normal .
n  distribution. These results have been recently confirmed by Hart and OQulton [45] for a
sample of approximately 80000 United Kingdom companies. Here, we present a study
of the distribution for a period of 20 years (from 1974 to 1993).

Figurel shows the total number of publicly-traded manufacturing companies
present in the database each year. We also plot the number of new companies and of
“dying” companies (ie., companies that leave the database because of merger, change
of name or bankruptey).

Figure 2(a) shows the distribution of firm size in each year from 1974-1993.
Particularly above the lower tails, the distributions lie virtually on top of each other,
Thus the distribution is stable over this period. This is a surprising result, when we
compare it with the predictions of the Gibrat model. Equation (1) implies that the
distribution of sizes of eompanies should get broader with time. In faet, the variance of
the distribution should increase linearly in time. Thus, we must conclude that other
factors, not included in Gibrat’s assumptions, must have important roles.

One obvious factor not captured by the Gibrat assumption is the entry of new
companies. Figure 2(b) shows that the size distribution of new publicly-traded
companies is approximately a log-normal with an average value slightly smaller than
the average of all companies. A possible explanation for this result is that some of these
new companies are the result of mergers or of the breaking up of existing large
companies.

Another factor not included in Gibrat’s assumptions is the “dying” of eompanies. As
shown in figs. 2(b), 2(c), this distribution is quite similar to the distribution for all
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companies. Thus, it suggests that the probability for a company to leave the market,
whether by merger, change of name, or bankruptey, is nearly independent of size.

When analyzing the data, it is important to consider the high level of the noise in
the tails. The use of equally spaced bins in building a histogram from the data is the
most straightforward method. However, it implies very noisy results for the tails
because of the small number of data points in that region. One way to solve this
problem, especially if some knowledge of the shape of the distribution exists, is to take
bins chosen with such lengths that all of them receive approximately the same number
of data points. In fact, we used equally spaced bins on a logarithmic scele, i.e. all firms
with sales values falling into an interval between 8% and 8**! with & an integer belong
to one bin.

32, The distribution of annual growth rotes. — The distribution p(7 |s,) of the
growth rates from 1974 to 1993 is shown in fig. 3 for three different values of the initial
sales [46]. Remarkably, these curves display a simple “tent-shaped” form. Hence the
distribution is not Gaussian—as expected from the Gibrat approach [14]— but rather is
exponential [6],

(5) p(r1 | 59) =

1 [_\/ém—‘ﬁ(sm ]

VEo, () T EREY

The straight lines shown in fig. 3 are calculated from the average growth rate 7 (s;)
and the standard deviation o,(s,) obtained by fitting the data to eq. (5). An implication
of this result is that the distribution of the growth rate has much broader tails than
would be expected for a Gaussian distribution.

38. Mean growth rate. — Economists have studied the relationship between mean
growth rate and firm size. Typically they do so by running a regression of growth rates
on firm size sometimes with other control variables included. Rather than use a
regression function, we undertake a graphical analysis of the mean growth rate.
Figure 4(2) displays 7(s,) as a function of initial size S, for several years. Although the
data are quite noisy, they suggest that there is no significant dependence of the mean
growth rate on Sy. Least-square fits of the individual curves to a form 7(s;) ~ In 5, lead
to estimates of the proportionality constant which are very small in magnitude (<
10~%), and whose sign can be positive or negative depending on the year. Our analysis
suggests that if a dependence exists, it is very weak for any range of sizes.

The analysis for the average of the nineteen 1-year periods, which is displayed in
fig. 4(b), confirms this observation. Furthermore, the figure suggests that the results
do not change when we consider other definitions of the size of a company.

3'4. Standard deviation of the growth rate. -~ Next, we study the dependence of
01(3) on sq. As is apparent from fig. 3, the width of the distribution of growth rates
decreases with increasing s,. We find that o,(s,) is well approximated for 8 orders of
magnitude (from sales of less than 10° dollars up to sales of more than 10" dollars) by
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Fig. 3. — Probability density p(r; |s) of the growth rate r =1In(8,/S,) for all publiely-traded US
manufacturing firms in the 1994 Compustat database with Standard Industrial Classification
index of 2000-3999, The distribution represents all annual growth rates observed in the 19-year
period 1974-1993. We show the data for three different bins of initial sales (with sizes increasing
by powers of 8): 87 <8, <&, 88 < §; <&, and 8 < §y < 819 The solid lines are exponential fits to
the empirical data close to the peak. We can see that the wings are somewhat “fatter” than what is
predicted by an exponential dependence.

the law (6]

(6) o1(sp) ~ exp{—Bsol,

where § = 0.20 + 0.03. Equation (6) implies the scaling law

) 01(Se) ~So* -

Figure 4(c) displays o vs. So, and we can see that eq.(7) is indeed verified by the
dataAlso of interest is the width of the distribution of final sizes S, = Sgexp[r ], that we :
designate by =,(Sy). We can express 2, as

& S8 =(SEY - (81

Taking 7(s;) = 0, simple integrations lead to the resuits

+
So

:(9) {81y = J Sy p(ry |Sp) dr = 142
— > — U]




JAN-27-2009 14:34 ~ PHYSICS LEPT-/BOSTON UNIV +1 617 3B3 9393 F.010

154 8. V. BULDYREV, H. LESCHHORN, P. MAASS, ETC.
D.75 ey ey
(a)
o J
S \
0.50 FY i
s .
=
3
*~ . i
S0 0.25 |
8o
=
§ 0.00 } 1
< .
-0.25

Fig. 4a. — Mean l-year growth rate 7, (8y) for several years. It is visually apparent that the data are
quite noisy, and that there is no significant dependence on S (at most a logarithmice dependence
with a very small coefficient). Also displayed is the mean growth rate for the I8-year period in
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Fig. 4b. — Average for the 19 years of 7, (s,) for several size definitions: sales, assets, cost of goods
sold and plant property and equipment. Error bars corresponding to one standard deviation are
shown for sales—values for the other quantities are nearly identieal. Again, no significant
dependence on S is found. Although it seems likely that the slightly positive value of 7(s,) is a real
effect, we eannot rule out the possibility of a bias of the data towards successful companies.
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Fig. 4c. — Standard deviation of the 1-year growth rates for different definitions of the size of a . ‘ '
company as a function of the initial values. Least-squares power law fits were made for all g Al
quantities leading to the estimates of : 0.18 = 0.03 for “assets,” 0.20 = 0.03 for “sales,” 0.18 = i
0.03 for “number of employees,” 0.18 = 0.03 for “cost of goods sold,” and 0.20 = 0.03 for “plant, i
property and equipment.” The straight lines are guides for the eye and have slopes 0.19, :
and
+ o So?'
(10) (SBy= [ SEpn |8y dn = —— .
— ]. - 2 01
Replacing these results onto (8) and expanding in Taylor series, we obtain
(1) =S P=8F(1+203+40t+...—1-0}—30i/4+ ...) = (8,0, (L + 1361/4).
Thus, to first order, we obtain

(12) 5,(S)) ~ S48 |

Note that the integral (10} converges only if o, < 1/A/2, which holds for companies with

sales larger than 10° dollars. For smaller companies, the values of X, computed directly

from the Compustat data fluctuate dramatically from one year to the next, as one would
“expect for the random variable with infinite variance.

3'5. Other measures of size. — In order to test further the robustness of our findings,
we perform a parallel analysis for the number of employees. We find that the analogs of
p(ry |8) and o(sy) behave similarly. For example, fig.4(c) shows the gtandard
deviation of the number of employees, and we see that the data are linear over roughly
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5 orders of magnitude, from firms with less than 10 employees to firms with almost 10°
employees. The slope § = 0.18 + 0.03 is the same, within the error bars, as found for the
sales.

As shown in fig. 4(¢), we find that eqs. (5) and (7) accurately deseribe three additional
indicators of a company’s size, i} assets (with exponent 8= 0.18 £0.03), i) cost of goods
sold (8 = (.18 = 0.03), and iii) property, plant & equipment (5 = 0.20 - 0.03).

3'6. The T-yeor growth vates. — Another relevant question is the validity of eq. (5)
for larger periods of time, i.e., if we consider the T-year growth rate »y, will we get a
similar distribution or not? The analysis of the data shows that the distribution of
growth rates for T as large as 8 years does not follow a log-normal distribution.

We find that for 7 <8 the distribution of growth rates approximately follows an
exponential distribution; ef. fig. 5(a). For T =16 the results are not clear due to the
noise.

Finally, we study the dependence of the width of the distribution, for a given value of
8y, on time. Figure 5(b) suggests that o(s,) grows as a logarithm or a small power of T.

For large company sizes the growth of ¢y can to some degree be approximated by
\/T, which is expected for independent successive annual growth rates. However for
small companies, ¢, grows more slowly than \/T, thus suggesting that one-year

Fig. 5a. — Probability density of the T-year growth rate for companies with initial size of 8% < §; <
8%, Tt is visually apparent that, at least for 7' < 8, the distribution is well approximated in its central
part by eq. (5). :
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Fig. 5b. — Plot of the average square width of the distribution 0% as a function of T for different
values of 8. It is clear that o® increases slower than linearly. This result implies anti-correlations
in the successive one-year growth rates.

Fig. Be. — Plot of the average width of the distribution ¢ r, as a function of S, for different values
of T. It is clear that the size dependence of ¢ becomes weaker for larger values of 5, 1.
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growth rates are anticorrelated. Our data suggest also that the exponént B is not
universal but decreases with T (see fig. 5(c)).

37. Discussion. — What is remarkable about eqs.(d) and (7) is that they
approximate the growth rates of a diverse set of firms. They differ not only in their size
but also in what they manufacture. The conventional economic theory of the firm is
based on production technology, which varies from product to product. Conventional
theory does not suggest that the processes governing the growth rate of ear companies
should be the same as those governing, e.g., pharmaceutical or paper firms. Indeed, our
findings are reminiscent of the concept of universality found in statistical physics,
where different systems can be characterized by the same fundamental laws,
independent of “microscopic” details. Thus, we ean pose the question of the universality
of our results: is the measured value of the exponent B due to some averaging over the
different industries, or is it due to a universal behavior valid across all industries? As 2
“robustness check,” we split the entire sample into two distinct intervals of SIC codes.
It is visually apparent in fig. 6(a) that the same behavior holds for the different
industries. Thus, we can conclude that our results are indeed universal across different
manufacturing industries in the US.

In statistical physics, scaling phenomena of the sort that we have unecovered in the
sales and employee distribution functions are sometimes represented graphically by
plotting a suitably “scaled” dependent variable as a function of a suitably “scaled”

T S —

(@)

o SIC: 2000-2999
10" | ® SIC: 3000-3999

10° 10* 10 10 10

Fig. 6a. — Dependence of ¢, on §; for two subsets of the data corresponding to different values of
the SIC codes. In principle, companies in different subsets operate in different markets. The
figure suggests that our results are universal across markets.
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Fig. 6b. — Scaled probability density Py = V201(sy) p(r |5) as a function of the scaled growth
rate 7y = V2Ir, — F1(55))/7,(sp). The values were rescaled using the measured values of 7;(sy)
and o,(sy). All the data collapse upon the universal curve py, = exp| — |#.q |] as predicted by
egs. (5) and (6).
A

Fig. 6c. — Similar scaling plot for the data from fig. 5a. Again, we can see that all the data collapse
onto a single curve.




JAN-27-2009

14:34

HYSICS DEPT-BOSTON UNIV +1 617 3B3 9393 F.016

160 ‘ 8. V. BULDYREV, H. LESCHHORN, P. MAASS, ETC.

independent variable. If scaling holds, then the data for a wide range of parameter
values are said to “collapse” upon a single curve. To test the present data for such data
collapse, we plot in fig. 6(b) the scaled probability density psca = V2o(sy) plry 18y) as a
function of the scaled growth rates of both sales and employees 749 = Vair -
7,(8))/o(). The data collapse upon the single straight line pees = exp[— | 7sem | ] sShows
small but consistent deviations for large growth rates from the exponential distribution
in eq. (5). Thus eq. (5) can be regarded only as a first-order approximation to reality.
Our results for i) cost of goods sold, ii) assets, and iii) property, plant & equipment are
equally consistent with such scaling. Figure 6(c) represents the analogous plot for
growth rates for different time periods 7. It can be seen that the shape of the
distribution remains practically unchanged for larger periods of time T > 1. Regardless

" of the exact validity of egs.(3) and (7), it is remarkable that the shape of the

distribution is similar for all company sizes and does not converge to a Gaussian, even
for large T—as the Gibrat model (eq. (1)) would predict.

The high degree of similarity in the behavior of sales, the number of employees, and
of the other measures of size that we studied points to the existence of large
correlations among those quantities, as one would expect.

4, - Stochastic modeling

In this section we will present and discuss models that, although very simple, may
give some insight into the empirical results. First, we look info the problem of the
distribution of growth rates. The generally weak assumptions underlying the central
limit theorem suggest that the distribution would be Gaussian. In fact, however, the
data have an exponential distribution not only for #; but also for r, 74, and 75.

A second puzzle is the striking simplicity of the power law dependence of o on Sp.
Such a result is reminiscent of critical phenomena and hints at the possibility of the
economy self-organizing into a critical state.

4'1. The exponential distribution of growth rates. - The eentral limit theorem
suggests that the distribution of T-year growth rates should be a Gaussian for T
sufficiently large. However, the analysis of the data shows that eq. (5) is verified for
7 < 8, while for T = 16 the noise makes any interpretation difficult.

Thus, we ean ask if there is a plausible modification of Gibrat's assumptions [14]
that could lead to eq. (5). One possibility is to relax the assumption of uncorrelated
growth rates and to assume that the successive growth rates are correlated in such a
way that the size of a company is “attracted” to an optimal size S *. This value may be
interpreted as the minimum point of a “U-shaped” average cost curve in conventional
economic theory and should evelve only slowly in time (on the scale of years) [47]. Let
us then consider a set of companies all having initial sales S,. As time passes, the sales
of each of the firms will vary from day to day (or over another time interval much less
than 1 year), but they tend to stay in the neighborhood of S*. In the simplest case, the
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growth process has a constant “back-drift,” i.e. 1

" 3,.‘:
Steat kexple,], S8, <8*%, \l ,

S, %exp[et], S,>S*,

(13)

where k is a constant larger than one and ¢, an uncorrelated Gaussian random number
with zero mean and variance o2<<1. These dynamics are similar to what is known in
economics as regression towards the mean [42,43], although this formulation is not
standard in economies. :

Written in terms of the logarithmic growth rate r, = In(S,/Sy), eq. (13) reads

(14) Toear— T = —Ink sgni(r,—r*) + &,

where #* =In(8*/S,} and sign (%) = —1 for & < 0 and sign(x) =1 for 2 > 0.
For large times £>> At we can replace eq. (13) by its continuum limit and obtain
dr(t)

Y kL ) — e
(15) At Ink—-[r(t) -7 | + VALe(),

where now &(t) is a Gaussian random field with (e(t))=0 and {e(f)e(t)) = I
= 0%6(t —t')[48]. Here, (...) means an average over realizations of the disorder.
Equation (14) describes a strongly overdamped Brownian motion of a classical particle
with mass 1 in a potential

(16) Viry=lnk|lr—r*],

where the friction constant is Af and the thermal energy o%/2 [49]. For large times ¢,
the “particle coordinate” r is distributed according to the equilibrium Boltzmann
distribution,

2Inklr, —r*
an p(ry |89) = h;f exp[— ——ilz—l]

£ 08

Hence, we recover eq. (5) with 7(sq) = r* and

o;

Vaink

The results expressed by eqgs. (17)-(18) can account for the increase of g, with the size
of the company if we assume that o, is a function of 5p. A model for such a dependence
will be discussed in subsect. 4'3.

(18) o1(80) =

4'2. Time dependence of the growth-rate distribution. — Equation (17) describes the
equilibrium distribution of the growth rates for sufficiently long times ¢ Our data
suggests that o, grows with time, even for £ = 16. One possible explanation is that we
are still in the transient regime of the process in eq.(13). In order to find the
distribution in the transient regime, we must write down the Fokker-Planck
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equation [49] associated with eq. (15):

_ % _10:¥f Ik ¥ .
(19) E—Eaﬁ'f-ﬂaslgn('r T ).

Using dimensionless variables

@0 z=T210  u=L,
6 0
where
o2 Ato?
21 Fo= — and =—=,
21 0= ok to (kY

and imposing a mass-conservation condition

b= 0
= =1
Ip(x)dx— I pla) dae = 5
0 —
we get the solution
1 —(|z] +wrP2u 1 [m[—u 2|z
(22) () = ——e U7t + —erfe e ~2lel |
P Vemu 2 VZu
which always satisfies the boundary condition
dlnyp
=-2,
Rl z=+0

For large u>>x, w1 (t>>rAlInk, t> Ato?/(Ink)®), in agreement with eq. (16), the
distribution can be well approximated by an exponential form

(23) p(rriso) = %e-\ruf*m_

For small % <<% the slopes of the graphs of the Inp(z, %) can be well approximated by a
linear equation 3lnp/dx = —1 —x/u, and thus the distributions p(r;, s) for large » are
parabolas widening with the increase of ¢. The width of the distribution p(x, ) is given
by

4
2 24p= Lerf /X 1,2 [w_ 1 (e —u2
4 o _lp{m,u)xdx 2erf 2+(u+2u)erfc 5 %(u +u)e -

For small %#<<1, 0% increases linearly with time, but for large u converges to its limiting
value 1/2 in agreement with eq. (18). In terms of the original varigble £, it happens when

83>ty = (Ato?)/(Ink)’. The comparison of our experimental data with eqs. (22) and (24)

suggest that these two equations eorrectly predict the qualitative behavior of p(r,, s;)
and o, but fail to reproduce important quantitative details of the experimental data.
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First, the distribution (22) for large « has a rate of decay faster than exponential
while the real data has a rate of decay slower than exponential. Second, the distribution
(22) always has a slope of —2 near the peak, while the slopes of the real graphs
apparently decrease with time. Finally, the behavior of g, (24) has a sharp crossover at
time #, from linear growth to constant, while the real data can be approximated as weak
power law for long time spans. This means that for real data the transient time #, is ) |
very large. |

These discrepancies can possibly be eliminated if one assumed that the noise ¢ in ‘
eq. (13) has long-range correlations (e,&,) ~ [ — ¢’ |77. Since the analytieal solution
of the problem is rather complicated, we attempted to solve the problem numerically,
assuming for simplicity the Lévy walk [50] type of correlations. We simulate the
multiplicative process deseribed by eq. (13), assuming that companies undergo long
periods of growth with positive £, = +¢, and long periods of recession with negative
£, = —e&. The durations of these periods [ we assume to be distributed according to a
power law function

(25) ply~17*, u=y+2.

These long winning and losing streaks may represent either the general state of the
economy of some catastrophic changes in firm size, e.g., firm merging or splitting,
events that do not happen instantaneously, but may, for large corporations, require a
long transitional period of several years. In a logarithmic space, the processes of
eq. (13) correspond to Lévy walks with unequal time steps: large steps directed toward
“~  the origin and small steps directed away from the origin. One can call this unusual type
of motion a Lévy walk in a potential field.
It is well known that classical Lévy walks exhibit superdiffusive behavior when
# < 350]. Our numerical analysis suggests that in this case a Lévy walk in an attract-
ive potential is not confined to the origin but ¢, diverges as power law

(26) oP=t4k

This case clearly does not correspond to our experimental data, since o2 grows more
slowly than ¢. On the other hand, when x > 3, Lévy walks are confined by the potential
but have very large transient times ¢, which diverge as 4 —3 +¢. In this case, in the
transient regime the distribution of growth rates have a tent-shaped form near the
origin, but with power-law wings. Moreover, in this transient regime the slope of the
tent shape decreases with time, and o} grows approximately as small power of &, thus
exactly reproducing all three unusual features of our experimental data. Hence Lévy :
correlated noise may provide a satisfactory explanation of our results. However, ' ;
additional work is needed to examine other possibilities. Lo

Another possible explanation for the time dependence of o7 is that the optimal size i
of a company does not remain constant but, in fact, performs some sort of random walk
with a very small diffusion coefficient &. Such a model can be easily solved and it leads
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to the prediction that

+ @
2D p(sT 130) = .L 1 J e—(s*—su)zf’?t e ~{sr —s*)a ds_* ,

2a V2xt_o

where o =a,(s,)/V/2 and 2 t = &T. The analytical form of the distribution of growth
rates is then given by

2 ta —
(28) plrp |30) = 2_{.-?67’/20 [3 ~rrfa erfc( fa—ry ) + g™ arfe (*—-t/a *+ )J ’

V2t V2t
+ow

where erfer =27/% f exp{ —y*] dy. The total width of the distribution at time 7 is

29 or=2a2+t=¢%+ DT,

Unfortunately, this result does not agree with the empirical data. Although the width
of the distribution indeed increases with T, this inerease is achieved by a rounding of
the top of the distribution while the slope, on a linear-log plot, of the wings of the
distribution remain constant. This prediction clearly disagrees with the observed
change in the slope of the wings of the distribution for 1 <7 <8, However the real
Phenomenen can be a joint effect of both correlated noise and changing of the optimal
size.

4'3. The scaling exponent B. - While the model in the previous section explains
eq. (5), it does not predict our finding about the the power law dependence of the
standard deviation of growth rates on firm size. In this section, we show how a model of
management hierarchies can predict eq. (7). In economics, it is generally presumed
that the growth of firms is determined by changes in demand and production costs.
Since these features are specific to individual markets, it is surprising that a law as
stmple as equation eq. (7) governs the growth rate of firms operating in much different
markets. While demand and technology vary across markets, virtually all firms have a
hierarchical decision structure. One possible explanation for why there is a simple law
that governs the growth rate of all manufacturing firms is that the growth process is
dominated by properties of management hierarchies [81]. This foeus on the technology
of management rather then technology of production as a basis for understanding firm
growth is reminiscent of Lucas’ model of the size distribution of firms [23].

At the outset let us acknowledge a tension between our empirical results and the
theoretical model in this section. In the preceding sections, we analyze the scaling
properties of the distribution of the logarithmic growth rate # and its standard
deviation ¢;. In this section we view companies as consisting of many business units.
Since the sales of a company are the sum of the sales of individual units rather than
their product, it is more convenient to analyze the standard deviation of the annual firm
size change rather then the logarithmic growth rate. Let X,(S,) be the standard
deviation of end-of-period size for initial size Sy. Since o;~8,7% and since S, =
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Soexp[r] = Sp+ Sy, it follows that X (S;) = Spo, ~S¢ 7#. As discussed in Section
III-D, ¢, must be small for this approximation to hold.

Let us start by assuming that every company, regardless of its size, is made up of
similarly sized units. Thus, a company of size S, is on average made up of N =S,/
units, where

- 1 ¥
(30) E = ﬁ iglgi b

and &; is the size of unit <. We further assume that the annual size change &, of each
unit follows a bounded distribution with zero mean and variance A, which is
independent of Sg. It is important to notice that throughout this section and the
following we consider A“E% to insure that sizes of units remain positive. Since some
divisions after several eycles of growth may shrink almost to zero, while others grow
several times, we assume that companies dynamieally reorganize themselves so that
they begin each period with approximately equal-sized divisions and the inequality
A <<E? holds.

If the annual size changes of the different units are independent, then the model is
trivial. Using the fact that (J;) = 0, we have

N
(31) <SI) =So+i§1(6i> =S|].

The second moment of the distribution is given by

N 2 N N
&2 =[50+ 20 )-8+ 5 S0 =5t
i= i=1j=

where we used again the fact that the 4/s are centered and independent,
Thus, the variance in the size of the company is

(33) Z‘%(So)=NA=SO-% ~Sp.

Using the fact that 3(S;) ~ 8¢ # (see subsect. 3'4), it follows that B=1/2[386].

The much smaller value of 8 that we find indicates the presence of strong positive
correlations among a company’s units. We can understand this result by considering
the tree-like hierarchical organization of a typical company [31]. The head of the tree
represents the head of the company, whose policy is passed to the level beneath, and so
on, until finally the units in the lowest level take action. These units have again a mean
size of € =8y/N and annual size changes with zero mean and variance of A. Here we
assume for simplicity that at every level other than the lowest each node is connected
to exaetly z units in the next lowest level. Then the number of units N is equal to 2%,
where % is the number of levels (see fig. 7).

What are the consequences of this simple model? Let us first assume that the head
of the company suggests a policy that could result in changing the size of each unit in
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5,8,8, 8, 8,8,8,8,

Fig. 7. - The hierarchical-tree model of 2 company. We represent a company as a branching tree.
Here, the head of the company makes a decision about the change &, in the size of the lowest level
units. That decision is propagated through the tree. However, the decision is only followed with a
probability /7. This is represent in the figure by a full link. With probability (1 — I7} 2 new growth
rate is defined. This is represented in the figure by a slashed link. We see that st the lowest level
there are clusters of values &; for the changes in size.

the lowest level by an amount &,. If this policy is propagated through the hierarchy
without any modifications, then it is the same as assuming in eq. (4) that all the 6 /s are
identical. This implies that

(34) (SH =8¢+ N2A,

from which follows
2 2 2 A
(35) Zl(SQ)T“N A=Sg ?’ B

and we conclude that §=0.

Of course, it is not realistic to expect that all decisions in an organization would be
perfectly coordinated as if they were all dictated by a single “boss.” Hierarchies might
be specifically designed to take advantage of information at different levels; and
mid-level managers might even be instructed to deviate from decisions made at a
higher level if they have information that strongly suggests that an alternative decision
would be superior. Another possible explanation for some independence in
decision-making is organizational failure, due either to poor communication or
disobedience.

To model the intermediate case between =0 and f=1/2, let us assume that the
head of a company makes a decision to change the size of the units of a company by an
amount 6, We also assume that d,, for the set of all companies, has zero mean and
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variance A. Furthermore, we consider that each manager at the nodes of the
hierarchical tree follows his supervisor’s policy with a probability I7, while with
probability (1 — 7T) imposes a new independent policy. The latter case corresponds to
the manager acting as the head of a smaller company made up of the units under his
supervision. Hence the size of the company becomes a random variable with a standard
deviation that can be computed either with numerical simulations or using recursion
relations among the levels of the tree.

The proposed model is analogous to the expansion modification models used by Li to
explain long-range correlations in the DNA sequences[51] and allows a simple
analytical solution. In faet, the local production units with numbers I and [ + k, where k
is the large number, are connected to each other through log, % levels of firm hierarchy.
Thus the correlations among them are equal to [72°%* since it is required that log, &
links going up and log, % links going down to connect them. Thus correlations between
production units decay as k¥ The variance £ of the total size of N production
units is thus '

(36) 22 ~N2+21r1H,’1nz — S§+2!nnﬂnz ,

which implies 8= —InIZnz. If —InIInz=1/2, the units become uncorrelated on ;
larpe seales and 32 grows as S;, which implies f = 1/2.
Finally, we can write, for n>>1, that the hierarchical model leads to

—In/lnz if H>z7%, !

~— (87 =
P g {1/2 if T<z 2.

Even for small n, we find that eq. (37) is a good approximation—e.g., while for z = 2 and
I1=0.87 we prediet 8 =0.20, when we take n =3 the deviation from the predicted
value ig only 0.03, i.e., about 15%.

Equation (37) is confirmed in the two limiting cases: when I1=1 (absolute control)
B =0, while for all IT <1/z'?, decisions at the upper levels of management have no
statistical effect on decigions made at lower levels, and 8 = 1/2. Moreover, for a given
value of 8 < 1/2 the control level 77 will be a decreasing function of z: I7 = z A, of. fig. 8.
For example, if we choose the empirical value 8=~0.15, then eq. 37) predicts the
plansible result 0.9 = I = 0.7 for a range of 2 in the interval 2 <z <10.

Our data for o, suggests that for larger time intervals g decreases. Can this be
explained within the framework of the hierarchical model? The answer is yes. The
decrease in 8 with time suggests that the activity of the company becomes more
coordinated on large time scales. It means that the probability [7 increases with time.
This is very plausible, since the information may propagate through the hierarchical
structure of the company with finite speed. On small time scales, the activity of the local
manager is less coordinated with the general policy of the company headquarters. For
example, firing and hiring small numbers of employees may be completely the
responsibility of local managers. A major decision, e.g., the firing of a large number of
employees, made at the top of the hierarchy is a relatively infrequent event (on a time '
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5 10 15 20
<

Fig. 8. -~ Phase diagram of the hierarchical-tree model. To each pair of values of (7, z)
corresponds a value of 5. We plot the iso-curves corresponding to several values of . In the
shaded area, marked “Uncorrelated,” the model bredicts that §=1/2, i.e. that the units of the
company are uncorrelated. Our empirical data suggests that most companies have values of T and
z in between the eurves for 8 =0.1 and f=02

scale of several years), but when it does ocecur, it is enforced strietly throughout all
levels of the hierarchy.

4'4. Combining the two models. — We started with two central empirical findings
about firm growth rates. The model in sect. 2 predicts one of those findings (the shape
of the distribution) and the model in seet. 3 predicts the other (the power law
dependence of the standard deviation of output on firm size). This section addresses
the relationship between the two models. First, we address concerns that the models
might be contradictory and show that they are not. Then, we show how the models ean
be combined into a single model that predicts both of our empirical findings.

In the tree model, firm growth rates are potentially the result of many independent
decisions. As a result, one might expeet that the central limit theorem would imply a
Gaussian distribution of firm output. In fact, however, the distribution of outputs is not
necessarily Gaussian.

To address the distribution of firm output in the tree model, it is necessary to make
an assumption about the distribution from which each independent growth decision is
drawn. No such assumption is needed to analyze the standard deviation of firm growth
rates, but is needed to analyze the shape of the distribution.

In fig. 9, we show the distribution of the inputs (ie. of each independent decision)
and the outputs for a tree with z=2, T~ 0.87, and n = 10. We find that for Gaussian
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Fig. 9a. — Probability density for the output and input variables in the tree model. Here we have
.  £=2,IT=0.87 and n = 10. Ganssian distribution of the input.
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Fig. 9b. — Probability density for the output and input variables in the tree model. Exponential
distribution of the input with the same parameters as in fig. 9a.
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Fig. 9c. — Data eollapse of the output distribution for trees with different number of levels. The
other parameters remain unchanged and the input is exponentially distributed. It is visually
apparent the similarity of the numerical results with the empirical data of fig. 6a.

distributed inputs, the output is not Gaussian in the tails. This finding is remarkable.
First of all, with z =2 and » = 10, the firm consists of 1024 units. With a probability to
disobey of 1 —0.87=10.13, one would expect 0.13 X 1024 =~ 133 of the units to, on
average, make independent decisions about their growth rates. Thus, even for
non-Gaussian inputs, one can hypothesize that the output is close to Gaussian.
Moreover, for Gaussian inputs, the sum of independent Gaussians is itself (Gaussian.
Thus, for every particular eonfiguration of the disobeying links, the output distribution
is Gaussian with variance mA, which is a function of this random configuration.
However, there are 2" ~#/= 1) possible configurations of links each of which produce
a Gaussian distribution with different integer m. Figure 10 shows the probability p, to
get a tree with given m computed for all trees with a given number of levels R, I =
0.87, and z = 2. As visually apparent in fig. 10, this probability density is a non-trivial
function, the discussion of the analytical properties of which is beyond the scope of the
present article. The final distribution of the firm output S; will be thus given by the
convolution of two densities: % and Gaussian with variance mA

n 1 — - )2,n'2mA
(38) Po(S1) =2pp ————e G1=% ,
' m VZ2mmA

which is no longer Gaussian for the observed form of P
In a general case, it can be shown by martingale theory {52] that for any input
distribution fx) with zero mean and finite variance A, the output distribution
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Fig. 10. - Numerical estimation from exact enumeration of the probability py, to find a tree with n
levels of hierarchy and a given variance mA of the distribution of its annual size change, provided
that I7 = 0.87 and z = 2. It is visually apparent that pj converges to a smooth scaling function
when n— .

converges for n~> o to a distribution
1 x
(39) —— % = |
)™ ( S() )

where g; is a function that does not depend on % but depends on f. Thus, we cannot
expect to obtain a result that the output distribution must be exponential regardless of
the input distribution. It would, however, be desirable to find some simple input
distribution that yields the output distribution that we actually observe. Figure 9 also
shows the output distribution when the input distribution is exponential in terms of
S, — S;. For small o,, it practically coincides with eq. (17). In this case, the output
distribution is nearly exponential, and the slightly fatter wings that we observe are
arguably consistent with our empirical results. Thus, in the limit of small o,, we can
combine the models of the two sections by assuming that the dynamic process
described in sect. 2 provides the input distribution for the tree model in sect. 3. This
additional assumption in the tree model then predicts both of our empirical {indings.
For large o, the direct combination of two models needs additional fine-tuning.
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5. — Conclusions

In summary, we study publicly-traded US manufacturing companies from 1974 to
1993. We find that the distribution of the logarithms of the growth rate decays
exponentially. Furthermore, we observe that the standard deviation of the distribution
of growth rates scales as a power law with the size S of the company, and grows slowly
with time 7. We propose new models that give some insight into these results. We solve
the models both numerically and analytically.

The models proposed are quite elementary, and show that simple mechanisms may
provide some insight into our findings. Our central results, egs.(3.5) and (3.1,
constitute a test that any accurate theory of the firm must pass, and suppert the
possibility that the scaling laws used to describe complex but inanimate systems
comprised of many interacting particles (as occurs in many physical systems) may be
usefully extended to deseribe complex but animate systems comprised of many
interacting subsystems (as occurs in economies). Furthermore, the kind of scaling laws
found in this study ean be viewed as empirical evidence supporting some hypothesis
regarding the self-organization of the economy [53].

This paper also proposes to offer a new approach to the study of economics. In this
approach, numerieal results are obtained from the empirical data and lead te numerical
tests of the models. The degree of accuracy to which the empirical results can be
repreduced with simple (and maybe simplistic) models shows the possibilities of this
approach. To develop the models in the direction of greater realism, we are pursuing
the analysis of the empirical data. Possible directions of research include studying data
from different countries to see if the results (namely the value of the exponents)
depend, e.g., on different national legistation: =
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