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In complex systems, statistical dependencies between individual components are often considered one of the key mechanisms
which drive the system dynamics observed on a macroscopic level. In this paper, we study cross-sectional time-lagged
dependencies in financial markets, quantified by nonparametric measures from information theory, and estimate directed
temporal dependency networks in financial markets. We examine the emergence of strongly connected feedback components in
the estimated networks, and hypothesize that the existence of information feedback in financial networks induces strong
spatiotemporal spillover effects and thus indicates systemic risk. We obtain empirical results by applying our methodology on
stock market and real estate data, and demonstrate that the estimated networks exhibit strongly connected components around
periods of high volatility in the markets. To further study this phenomenon, we construct a systemic risk indicator based on the
proposed approach, and show that it can be used to predict future market distress. Results from both the stock market and real
estate data suggest that our approach can be useful in obtaining early-warning signals for crashes in financial markets.

1. Introduction

Connectivity patterns in complex systems and their dynamic
properties have been the focus of extensive research in phys-
ical, biological, neurological, and social systems [1–4]. In
many studies, identification of strong dependencies between
interconnected components has been linked to systemic
risk—the risk associated with the collapse of the entire system
[5–8]. This line of research is especially prominent in model-
ing risk in financial systems [9, 10], where dependent compo-
nents within the system (e.g., banks, companies, and financial
assets) are more likely to fail simultaneously and influence

other connected components (a phenomenon known also
as spillover effect), thus inducing a potential cascade of fail-
ures in the entire system [11]. However, due to the dynamic
nature of financial systems and often complex dependency
relationships, the identification and quantification of these
effects is generally not a trivial task [12, 13]. In addition,
financial variables and time series (e.g., prices, returns, and
volumes) are known to exhibit strongly non-Gaussian char-
acteristics, heavy tails, and long-range dependence, which
calls into question standard parametric approaches [14].

The complexity of economic and financial systems have
been in the focus of research from various perspectives,
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employing Isingmodels [15, 16], agent-basedmodels [17–19],
and game theory [20]. The instabilities therein, observed as
crises and crashes [21, 22], are especially elusive and hard
to model and predict [23, 24]. Generally, connectivity pat-
terns in financial markets are modelled by estimating and
analyzing graphs of financial assets [25], which have been
found to capture the structural properties of these complex
systems, such as the hierarchical structures captured by
spanning trees in financial markets [26, 27]. Empirical
research on connectedness in financial systems and the rela-
tion to systemic risk has intensified in the aftermath of the
2008 subprime crisis, focusing either on contagion within
the banking sector or the comovement in financial markets
[28]. Longin and Solnik [29] first provided formal evidence
of increased correlations during bear markets, and recent
studies report that volatility cross-correlations exhibit long
memory meaning that once high volatility (risk) is spread
across the entire market, it could last for a long time [30].
Adrian and Brunnermeier’s ΔCoVaR and the systemic
expected shortfall (SES) by Acharya et al. [31] quantify the
potential distress of financial institutions conditional on
other institutions’ poor performance, thus measuring the
spillover of losses within the financial sector. Kritzman and
Li [32] quantify the divergence of the cross section of finan-
cial returns from their historical behavior expressed as the
Mahalanobis distance, and find that it can be used similarly
to implied volatility in sets of assets without liquid option
markets, while accounting for their interactions. To measure
the total contribution of assets to the systemic risk of the
entire market, Kritzman et al. [33] propose the absorption
ratio, based on the principal component analysis of the cross
section of financial returns. A more detailed look into the
connectivity patterns in financial systems was proposed by
Billio et al. [34], who analyzed the dynamic causality patterns
in networks of hedge funds, brokers, insurance companies,
and banks. They report a highly asymmetric relationship
during the subprime crisis of 2008 and find that the propor-
tion of significant causal relationships in the network
increases with the financial distress and crises in the market.
Recently, Curme et al. [35] introduced a numerical method
for validating time-lagged correlation networks of assets
and found a growing number of statistically validated links
and the rise of instability in financial networks. Although
the state-of-the-art approaches employ correlation-based
measures and Granger causality tests for inference of depen-
dency relationships in financial networks, the assumptions of
linearity and Gaussianity of these methods are often violated
with financial data. In addition, the conclusions drawn from
such analyses require further long-range historical backtests
of the relationship between specific network patterns and
systemic risk in the markets which would include more sys-
temic events than the single 2008 subprime crisis.

In this paper, we investigate the dynamic relationships
within a network of financial assets, their evolution through
time and relation to the systemic risk in the market. We
take a nonparametric approach to identify and validate
time-lagged cross-sectional links between pairs of assets in
a financial market. Based on the information-theoretic con-
cept of entropy which quantifies uncertainty, we measure

the dependence between and within time series as a reduc-
tion in uncertainty, as quantified by Schreiber’s transfer
entropy [36]. The concept of entropy has been used to mea-
sure sequential irregularity in many time series applications,
with notable results in finance. Moreover, transfer entropy-
based methods yield state-of-the-art results in detecting
information flows in computational neuroscience, bioinfor-
matics, and financial economics [37]. Specific financial appli-
cations include estimation of serial irregularities and risk in
time series or returns and inference of the global dependence
networks of financial indices [20, 38–42]. We expand on pre-
vious results by investigating the evolution of dynamic causal
networks (sometimes referred to as information flow net-
works) through time and analyzing their association with
systemic risk in the market. Moreover, we focus on the emer-
gence of information feedback within these networks and
hypothesize that strongly connected feedback components
may indicate future distress in the system. The concept of
feedback in financial systems was previously linked to sys-
temic risk in various studies [22, 43], most notably, the
DebtRank methodology proposed by Battiston et al. [44]
uses interbank lending networks to assess the risk within
the financial sector. Our approach moves beyond interbank
lending networks and relies on time series of returns for any
set of financial assets to infer directed dependency networks
and study the information feedback within. In addition, pre-
vious approaches often depend on fundamental firm-level
financial data, available only in quarterly time intervals
and often heterogeneous in nature, while in this paper we
estimate dependency networks using asset prices from
financial markets, allowing for wider areas of application.

Based on the proposed methodology for estimating
dependency networks of financial assets from time series of
asset returns, we examine the general levels of predictability
in the market and the topologies of the estimated dependency
networks. Furthermore, we study the emergence of informa-
tion feedback in the networks and introduce a network-based
systemic risk indicator to test our hypothesis. We apply the
proposed approach to 9 U.S. sector indices on a period from
1999 to 2016 and a selection of S&P 500 constituent company
stocks from 1980 to 2016. In addition, we consider the U.S.
House Price Index [45] data and apply our approach to the
real estate market as well. Our results suggest that the
dynamic dependency networks exhibit strongly connected
feedback components, particularly around periods of finan-
cial crises. The proposed systemic risk indicator is shown to
yield predictive power for future market distress, both for
the two stock market datasets (sector indices and individual
stocks), and the real estate market. These results demonstrate
the validity of our approach and indicate that the proposed
methodology can be used to construct early-warning signals
for crashes in financial markets.

2. Methods and Data

2.1. Information Theoretic Causality Measures. In thermody-
namics and statistical mechanics, entropy is a measure of
disorder in a system. In information theory, it is a quantifica-
tion of uncertainty of a process, based on the Shannon
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information content of an event x: η x = −log p x [46]. For
a sequence of events X, entropy is defined as the average
information:

H X = E η x = −〠p x log p x 1

In analogy, the joint entropy H X, Y for two variables X
and Y is defined with the joint probabilities p x, y in the
sum. The entropy is maximal when all events are equally
probable, meaning their distribution is uniform, and mini-
mal (equal to zero) for deterministic processes [47]. In
analogy with (1), the idea of conditional entropy H X ∣ Y
measures the uncertainty in X left after accounting for the
context in Y :

H X ∣ Y = −〠p x ∣ y log p x ∣ y 2

To measure causality relationships between time series,
the most common approach is the Wiener-Granger concept
of causality [48]: if the prediction of time series Xi t given
its own past Xi t − 1,… , t − k is improved by using the past
values of another time series Xj t − 1,… , t − l , then Xj → Xi

[49]. Although the most popular approach to Granger cau-
sality is based on estimation of VAR models, Schreiber [36]
proposed the notion of transfer entropy as a nonparametric
version of Granger causality. In the information theoretic
sense, transfer entropy is defined as the amount of uncer-
tainty in X given its own past reduced by including the past
of Y :

T j→i =H Xi t ∣ Xi t − 1 −H Xi t ∣ Xi t − 1 , Xj t − 1 ,
3

where the uncertainty is quantified using the concept of con-
ditional entropy H A ∣ B : the uncertainty left in A after
accounting for the context B [37]. Note that owing to the lack
of autocorrelation in return time series, we may restrict the
past of Xi to k = 1 and past of Xj to l = 1 steps and thus reduce
the dimensionality of the estimation procedures.

By incorporating Shannon’s entropy given in (2), the
transfer entropy formula from (3) can be specified as

H Xi t ∣ Xi t − 1 −H Xi t ∣ Xi t − 1 , Xj t − 1
=〠p Xi t , Xi t − 1 , Xj t

− 1 log p Xi t ∣ Xi t − 1 , Xj t − 1
p Xi t ∣ Xi t − 1

4

The above expression is also known as the Kullback-
Leibler divergence between distributions p Xi t ∣ Xi t − 1 ,
Xj t − 1 and p Xi t ∣ Xi t − 1 [36]. If the distribution Xi

t given its own past Xi t − 1 were independent of Xj t −
1 , the KL divergence given in (4) would be equal to 0. On
the other hand, if Xj would deterministically predict Xi, the

KL divergence would reach its maximum value, equal to the
entropyH Xi t ∣ Xi t − 1 . In the Granger-Wiener causality
sense, by using expression (4) we measure the improvement
in predicting Xi when knowing Xj, conditional on the past
of Xi itself. It has been shown that for Gaussian variables,
transfer entropy is equal to Granger causality [50], which
implies that the standard linear and VAR model-based
methods are a special case of the proposed approach.

Due to a positive bias in the estimates T̂ j→i, Marschinski
and Kantz [38] propose the effective transfer entropy for
financial time series, calculated by subtracting the mean of

the surrogate measurements T̂
s
j→i, using random permuta-

tions of the source time series Xj. In order to measure the
fraction of the maximum possible value, we employ the con-
cept of normalized transfer entropy, used in neurophysiology
and computational neuroscience [51, 52]. It is defined as the
effective transfer entropy divided by the entropy of Xi given
its own past, which is the maximum theoretic value of T j→i

(for a case when H Xi t ∣ Xi t − 1 , Xj t − 1 = 0):

T̂
n
j→i =

T̂ j→i − E T̂
s
j→i

H Xi t ∣ Xi t − 1 5

This measurement represents the fraction of information
in Xi not explained by its own past which is explained by
including the past of Xj.

To include potential serial dependency of each time series
Xi t on its own past Xi t − 1 , we also estimate the mutual
information: Ii =H Xi t −H Xi t ∣ Xi t − 1 . In the dis-
crete case, the expression can be reformulated as follows:

H Xi t −H Xi t ∣ Xi t − 1

=〠p Xi t , Xi t − 1 log p Xi t ∣ Xi t − 1
p Xi t p Xi t − 1

6

The above expression again corresponds to the KL diver-
gence [47] between the joint distribution p Xi t , Xi t − 1
and the product of marginal distributions p Xi t p Xi t −
1 . If the return distributions were independent, the joint
distribution would be equal to the product of marginals
and the KL divergence would be equal to 0. On the other
hand, if the subsequent returns were functionally (deter-
ministically) dependent, then the KL divergence would
reach its maximum value, equal to the entropy H Xi t .
In addition, the mutual information measure for Gaussian
distributions is determined by the Pearson correlation coeffi-
cient ρ KL = −0 5 log 1 − ρ2 —again implying that the
proposed approach is a generalization of the correlation-
based methods. In analogy with (5), we estimate the effective

mutual information Îi − E Î s
i (where Î s

i is estimated using
the shuffled time series Xi t − 1 ) and normalize it by H Xi
t , which is its theoretical maximum.

2.2. Empirical Estimation. Evidently, distributions p Xi t ,
Xi t − 1 , Xj t − 1 , p Xi t − 1 , Xj t − 1 , p Xi t , and
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p Xi t − 1 need to be estimated, commonly not a simple
task due to scarcity of data. Various methods for discretizing
asset returns for transfer entropy estimation have been uti-
lized [40, 41], mainly based on binning. Specifically, due to
the dynamic nature of financial systems, dependencies are
estimated using time windows rather than the entire history,
which makes the studied time series considerably short. Since
a large number of bins may significantly deteriorate the esti-
mation of multidimensional distributions, we significantly
reduce the number of variables by limiting returns into just
two classes based on their sign: positive and negative. How-
ever, rather than just taking the signs of returns and counting
their occurrences on a given time window, we employ con-
cepts from fuzzy set theory [53] and define a sigmoid mem-
bership function which encodes realized returns r t to two
classes (positive and negative) with membership μ+ t and
μ− t :

μ+ t = 1
1 + e−αr t

,

μ− t = e−αr t

1 + e−αr t
,

7

where α is a parameter defining the steepness of the sigmoid
function. Note that ∀r t : μ+ t + μ− t = 1. Therefore, the
sigmoid functions define the membership of r t for the
positive and negative classes, depending on its magnitu-
de—very positive returns will have much higher μ+ t
(and therefore smaller μ− t ), and vice versa, as shown in
Figure 1.

To better understand the procedure of estimating dis-
crete distributions of returns with just two discrete realiza-
tions based on sigmoid membership functions, we give an
illustrative example: let r = 0 03, −0 01, 0 04, −0 02 be a
time series of asset returns at n = 4 discrete points in time.
By simply counting the occurrences of positive and negative
returns sgn r = 1, −1, 1, −1 , one can estimate the discrete
distribution of two return classes: p+ = 0 5 and p− = 0 5.
However, when the sigmoid membership functions are
applied, one obtains μ+ = 0 99, 0 18, 0 997, 0 05 and μ− =
0 01, 0 82, 0 003, 0 95 . From these memberships, the prob-
abilities can be estimated as p+ = 1/n∑μ+ (same for μ−):
p+ = 2 22/4 = 0 55 and p+ = 1 78/4 = 0 45. The procedure for
multidimensional returns is analogous to this one—returns
are discretized to two classes using the proposed sigmoidal
membership function, and discrete distributions are esti-
mated by summing the memberships of the samples. In this
fashion, we do not treat all signs equally but through mem-
berships assign more weights to those returns which have
larger magnitudes, thus, very small either positive or nega-
tive returns are not as significant as larger ones. By doing
so, we manage to keep the dimensionalities of discrete distri-
butions in (6) and (4) low, while accounting for the magni-
tude of returns.

To obtain directed causality networks from multiple
time series (which represent components of a dynamical
complex system), we estimate T n

i→j for all pairs of time series

i, j . From these we infer directed networks with weights
defined as

wij =max T n
i→j, 0 8

In the constructed causality networks, directed edges

i→ j exist if T̂i→j > E T̂
s
i→ j , with weights equal to the normal-

ized transfer entropy T̂
n
i→j. Similarly, self-loops i→ i exist if

Îi > E Î s
i and their weights correspond to the estimated nor-

malized mutual information Î n
i . Therefore, we estimate a

temporal network where links represent causality relation-
ships between individual financial assets (including self-
loops, which indicate serial dependency).

In this contribution, we provide empirical results by
performing our analysis on three distinct datasets: (i) daily
prices of 9 U.S. sector indices on a period from 1990 to
2017, (ii) daily stock prices of 47 companies which are
long-established constituents of the S&P 500 index from
1980 to 2017, and (iii) quarterly house price indices of 51
U.S. states on a period from 1975 to 2017 [45]. Since prices
generally have a positive drift (often modeled as Brownian
motion), to measure causality between financial time series
we use logarithmic returns, calculated as the change in the
logarithm of the price S t :

R t = log S t − log S t − 1 9

Thus, in our analysis time series Xi, i = 1,… ,N corre-
spond to the N individual components of the considered
financial systems (specifically: 9 sector indices, 47 companies,
and 51 house price indices).

2.3. Information Feedback in Directed Dependency Networks.
The proposed methodology is based on detecting pairs of
time series where knowing the past of one helps predict the
future of the other with respect to only knowing its own past.
By estimating pairwise links in such a way, we obtain
networks where the nodes represent individual time series
and the directed links between them denote the estimated
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Figure 1: Membership functions with parameter α = 150 used for
calculating discrete distributions of asset returns.
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dependencies. Even though pairwise methods may not cap-
ture a common third driving factor, accounting for all of such
effects is virtually impossible in real-world datasets. On a net-
work level, the goal is not to measure the entire dependency
of the system (for instance, as measured by the total correla-
tion)—this would require estimation in high-dimensional
settings, which is especially problematic in systems such as
financial markets, where long time windows may not be
appropriate due to their dynamic properties. Rather than
that, we are interested in the patterns created by the esti-
mated dependency networks, inferred from pairwise links.
Note that these are not instantaneous correlations (which
would be measured by the correlation/covariance matrices),
but rather time-lagged effects which may not exist even in
the presence of high correlations, and represent a nonlinear
extension of the well-known Granger causality [54].

We hypothesize that feedback effects in the dependency
structure of financial assets are symptomatic of severe ineffi-
ciencies in the system, and thus are related to the overall level
of systemic risk. We define information feedback not only as a
bidirectional dependency (or information transfer, as mea-
sured by transfer entropy) estimated in pairs of assets, but
also as a loop of any size in the network, forming a pattern
of cyclic dependency. This is related closely to strongly con-
nected components (SCC) from network theory—defined as
subgraphs consisting of nodes which are all reachable from
every other node within the same subgraph—as shown in
Figure 2.

Evidently, the emergence of SCCs indicates feedback in
the networks, not only between pairs of nodes, but also cycles
through multiple nodes and edges. We measure this by
employing Tarjan’s procedure [56] for identifying SCCs in
each network. The procedure is a depth-first search algo-
rithm which traverses all nodes and their respective neigh-
bors, and partitions the original directed graph into
subgraphs corresponding to the SCCs. The algorithm passes
once through each node, building a forest of trees and sub-
trees containing nodes reachable from each traversed node,
while keeping track of the highest reachable parent node for
each traversed node in the graph (since these links are not
necessarily preserved in the trees). Nodes which contain a
link to a parent in their tree or another node which may link
to a common parent in the tree form a strongly connected
component, including all other nodes in their subtree. The
algorithm pseudocode for a set of vertices V and edges E is
given below.

The algorithm does not depend on the ordering of nodes
or the choice of the first root node. Moreover, since the
depth-first search traverses each node only once, the compu-
tational complexity of O V + E . We employ Tarjan’s algo-
rithm to detect SCCs in the estimated directed dependency
networks obtained from financial time series, and study
the properties and emergence of information feedback in
the system.

3. Results

3.1. U.S. Stock Market. First, we analyze the dependency net-
works of the U.S. financial markets represented by the 9

sector indices and 47 stocks of S&P 500 constituent compa-
nies. Before estimating temporal networks, to measure a gen-
eral amount of predictability we estimate the entropies
H Xi t and conditional entropies H Xi t ∣ Xi t − 1 for
all stocks i, and conditional entropies H Xi t ∣ Xi t − 1 , Xj

t − 1 for all stock pairs i, j on a rolling time window of
T = 1 year and a step of 1 day. Figure 3 shows the estimated
entropies of the 47 stocks of S&P 500 constituent companies,
averaged over all companies i and pairs i, j , subtracted
from the theoretical maximum entropy, thus quantifying
the amount of predictability in the time series of returns
through time.

The evidence in Figure 3 suggest that the predictability of
stock returns from their own pastH Xi t ∣ Xi t − 1 and the
past of other stock returns H Xi t ∣ Xi t − 1 , Xj t − 1 gen-
erally diminishes through time, as indicated by the distinct
negative trends in conditional entropies and the differences
between the conditional entropies and the entropies of each
stock i. This may be interpreted through the implications of
the efficient market hypothesis [57, 58] and suggests that
through the last 4 decades the frictions in the U.S. stock mar-
ket have decreased—this is in line with a reported increase of
liquidity and reduction of trading costs in the U.S. stock mar-
ket in the observed period from 1980 to 2017 [59].

We estimate the normalized transfer entropies T̂
n
j→i for

all pairs of stocks i, j and analyze snapshots of inferred cau-
sality networks at different points in time, shown in Figure 4.
It is evident that the causality networks exhibit considerable
differences in different periods:

(a) During the period of stable market growth from
1994 to 2006, the estimated network is sparse with
relatively low values of normalized transfer entropy
links.

(b) During the Dot-com bubble and crash between 1999
and 2001, the network is much more dense with
higher link weights.

(c) Again during a period of market recovery from 2004
to 2006, the network is considerably lighter in terms
of link weights.

(d) During the subprime bubble and crisis from 2007 to
2009, the estimate network is almost fully connected
with considerably heavier weights.

These results suggest that cross-sectional causal relation-
ships between stocks rise during turbulent market periods
and are substantially lower when the entire system is stable.

To analyze this relationship, we measure the total num-
ber of links as a percentage of the maximum possible number
of links in the network and the dynamics of this quantity
through time. In addition, we study the emergence of feed-
back relationships in the estimated networks—here we define

the elementary feedback pair as a situation where both T̂
n
j→i

and T̂
n
i→j are nonnegative for a pair of time series i, j . We

count the number of pairs i, j for which such relationships
are found and again express it as a percentage of the total
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possible number of such pairs in a network. In addition, we

inspect the average link weight (equal to the average T̂
n
i→j

for identified links), and display these quantities for the net-
works of 47 stocks of long-established S&P 500 constituents
in Figure 5.

The average link weight is shown to gradually decrease
over time, which is in line with the predictability levels in
Figure 3. However, due to the bias correction in (5), the num-
ber of nonnegative estimated normalized transfer entropies
(i.e., the number of links) does not have this drift.

We estimate the SCCs in each network through the
observed period and analyze the individual SCC sizes (num-
ber of nodes within the SCC), demonstrated in Figure 6.

These results reveal the nature of the feedback in tempo-
ral causality networks, suggesting that it mainly concentrates
within one large SCC, rather than multiple commensurable
components. This finding is especially interesting when con-
sidering the fact that for correlation matrices of contempo-
raneous asset returns, the first eigenvalue in the spectral
decomposition (also known as market mode) is found to
account for themajority of variance in themarket [33, 34]. This
finding suggests that the common risk component in intercon-
nected financial markets is not only contemporaneous, but
also spills over through temporal dependencies between
assets, and that this effect seems to persist through time.

Moreover, the notable rise in the SCC size around 1998
which remains relatively high until after the 2008 subprime

crash (with some fluctuations between the 2000 Dot-com
bubble and the 2008 crash) might be evidence of a phase
transition in the complex network of financial assets [2, 60].
The emergence of such a large SCC in the network might
be a consequence of the investors forming patterns of feed-
back trading across almost the entire market—something
reported both in individual and institutional investors
[61]. A possible line of further research might try to find
which behavioral properties of agents on a microstructural
level cause such dynamics to be observed in the system
[17, 62, 63].

In this paper, we hypothesize that the information feed-
back observed in directed dependency networks indicates
inefficiencies in the financial market and may be used as a
measure of systemic risk. To verify our hypothesis, we mea-
sure the amount of feedback in each network by only consid-
ering the first largest SCC (motivated by the fact that is
significantly larger and consists of up to 100% of nodes in
the network) and propose a measure based on the outdegrees
d+i of all nodes i within the largest SCC:

S = 1
N N − 1 〠

i∈SCC
d+i =

1
N N − 1 〠

i∈SCC
〠
N

j=1
T̂

n
i→j 10

We normalize by 1/ N N − 1 which is the maximum
possible number of directed links in a fully connected giant
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Figure 2: The causality network of the U.S. stock market estimated in the period 1992–1994, showing only nodes connected to the main
component. Two strongly connected components and the edges within are marked in green and blue. The network was visualized in the
Cytoscape software environment [55].

6 Complexity



SCC which would contain all nodes in the network. We call
the quantity in (10) the SCC index and calculate S t from
the networks estimated at each point in time. Due to the fact
that the existence of feedback within the network does not
necessarily mean that a negative shock is about to occur, we
combine the estimated SCC index with the VIX index, calcu-
lated using implied volatilities on the S&P 500 index, also
known as the fear index. The goal of including the VIX into
the early-warning indicator is to measure both the feedback
and fear within the market—however, it is not in the scope
of this paper to undertake the details of constructing a com-
prehensive early-warning indicator for financial crises: this is
left for further analyses which would include exogenous
effects and data. In the following results, we only use the
observed market data to demonstrate the predictive power
of the proposed approach. The results for the SCC index
and the VIX ⋅ S indicator for both stocks and sector index
datasets are shown in Figure 7.

The estimated SCC index builds up in the bull market
prior to the Dot-com bubble of 2000, as well as just prior to
the 2008 subprime mortgage crisis, but in both cases deflates
with the aftermath of the crashes. The shift in the behavior of
the system seen in 2003 has also been reported in a mutual
information-based analysis by Harré and Bossomaier [64].
It is important to note that events such as the September 11
attacks are exogenous to the system and thus cannot be
expected to be found in the data and predicted by such
endogenous approaches—such considerations are important,
especially in the presence of so-called “twin crises” [65]. In

1: procedure TARJAN V , E
2: S← new empty stack
3: SCC← // list of strongly connected components
4: nodecounter← 0
5: for v ∈ V do
6: if index v is not defined then //v has not been visited
7: BUILDTREE(v)
8: procedure BUILDTREE(v)
9: nodecounter← nodecounter + 1
10: index v ← nodecounter //index of a visited node is the current counter

nodecounter value
11: lowlink v ← nodecounter //initialize the smallest index of an accessible node to its own index
12: push v to S
13: for neighbors u of v do
14: if lowlink u is undefined then //u has not been visited
15: BUILDTREE(u)
16: lowlink v ←min lowlink v , lowlink u
17: else if u is on S then //u has been visited but it is in the current component
18: lowlink v ←min lowlink v , index u
19: if index v = lowlink v then //v is a root of the component
20: newSCC← //create new empty SCC
21: repeat
22: u← top of S
23: add u to newSCC
24: pop top from S
25: until u = v
26: add newSCC to SCC //add the new SCC to the list of SCCs

Algorithm 1. Tarjan’s Strongly Connected Component Algorithm.
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9 ×10−3

Hmax − H[Xi(t)]
Hmax − H[Xi(t)|Xi(t − 1)]
Hmax − H[Xi(t)|Xi(t − 1),Xj(t − 1)]

Figure 3: Estimated entropies H Xi t , H Xi t ∣ Xi t − 1 , and
H Xi t ∣ Xi t − 1 , Xj t − 1 for all stocks i and stock pairs i, j
of the 47 stocks of S&P 500 constituent companies, averaged over
all companies i and pairs i, j , and subtracted from the theoretical
maximum entropy. The difference H Xi t ∣ Xi t − 1 −H Xi t
corresponds to the amount of predictability of time series of
financial returns from their own past, and H Xi t ∣ Xi t − 1 , Xj

t − 1 −H Xi t corresponds to the amount of predictability of
time series from both their past and the past of other time
series—both of these quantities diminish through time.
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the case of the subprime mortgage crisis, although some
econometric evidence exists on liquidity and return depen-
dence prior to the crisis [66, 67], the question remains to
what extent the housing bubble was priced in the stock mar-
ket. Our SCC index seems to rise just in the onset of the 2007
instabilities, but prior to the large drawdown in the S&P 500
index of 2008—a similar increase in risk was observed in
other systemic risk measures [32, 33].

Generally, there are two assumptions that each early-
warning indicator should meet. First, it should warn prior
to the arrival of the large shocks, thus ex ante not ex post.
Second, the peaks indicating these shocks should be substan-
tially higher compared to the bulk of the indicator quantify-
ing the rest of the events. To verify that increased values of
the SCC index S t and the proposed systemic risk indicator
VIX · S t both rise prior to periods of increased volatility, we
inspect the cross-correlation functions between the two and
the volatility of the S&P 500 index, as measured by the
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Figure 4: Estimated dependency network of 47 long-established constituents of the S&P 500 index, estimated using daily stock returns,
corresponding to distinct periods in time: a period of stable market growth from 1994 to 1996 (a) and the Dot-com bubble and crash from
1999 to 2001 (b). Arrows on the lines denote the direction, and thickness represents the amount of the estimated causality between stocks.
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Figure 5: Number of links (shown in dark blue, scale on the left
axis), and the number of feedback pairs (light blue, left axis) as
a percentage of total possible links/pairs, and the average link
weight (black, right axis) for the causality networks estimated
from the U.S. stock market data on a rolling time window of
T = 1 year.
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Figure 6: The number of nodes within the largest and second
largest strongly connected components of the networks, expressed
as a percentage of all the nodes in the network. The transparent
lines are the raw data and the full blue and green lines correspond
to the 1-year moving average.
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standard deviation of returns on a rolling time window of 1
year—the past 1-year realized volatility σt−1y . The cross-
correlation functions for both stocks and sector index data
are shown in Figure 8, indicating that both considered signals
increase prior to the increase in volatility, by ca. τ = 150 days
for stocks and τ = 250 days for sector indices.

Furthermore, to test the capacity of the SCC index to
predict future distress in the market, we perform a regression
on the future 1-year realized volatility σt+1y of the S&P 500
index, calculated as the sample standard deviation.We choose
this period even though results from the cross-correlation
analysis may suggest that the index calculated from U.S.
stock market data may be predictive over a shorter time
frame. Since different time windows for the estimation of
the SCC index could very well yield different time frames
for the prediction of volatility, this is left to further research
and we proceed with the 1-year time window both for the
estimation of the SCC index and inference on forward volatil-
ity prediction. First, we define the reduced model where the
input variables are the VIX indicator and the past 1-year real-
ized volatility σt−1y, to account for the autoregressive nature
of market volatility: σt+1y t = β0 + β1VIX t + β2σt−1y t .
The VIX is included in the null model in order to investigate
how much the proposed SCC index alone improves volatility
prediction as opposed to standard techniques and signals. It

is also important to note that the past volatility is calculated
on a time period t − 1y, t and future volatility on t, t + 1y ,
meaning that there is no overlapping between the windows.
In the expanded model, we include the SCC index S:
σt+1y t = β0 + β1VIX t + β2σt−1y t + β3S t . To compare
these, we use the adjusted R2 measure (which takes into
account the number of parameters in the model) and the
Akaike information criterion (AIC)—note that the AIC is
observed on an additive scale, and only the differences of
AIC between models are interpretable, in such a way that a
model with AIC reduced by 10 or more is considered to have
substantial support [68]. The results in Table 1 demonstrate a
significant improvement in future volatility prediction when
the SCC index is included, as opposed to the reduced models
including only past volatility and the VIX index. This is
implied both by the increase in the adjusted R2 measure
and the Akaike information criterion (AIC) which is strongly
decreased in the expanded model. Although from a model-
ling perspective the R2

adj of 0.45 and 0.5 for the expanded
models may not seem as an exceptional fit, these are not dis-
tant from other results in financial research; for instance, the
fit of Shiller’s CAPE on the 10-year forward returns which is
around 0.5–0.6 (depending on the period) [69]. However, to
the best of our knowledge there are no similar results for such
short- to midterm predictions of market volatility (i.e., the
forward 1-year period used here). In addition, to see how
the combination of VIX and the SCC index fares against
the linear model, we include the interaction term VIX · X in
the regression, and observe that the model does not seem to
improve significantly, as suggested by the R2

adj and AIC mea-
sures. However, we obtain the best results for the AIC when
estimating a linear model using only the interaction term
σt+1y t = β0 + β1VIX t · S t —for both the stocks and sec-
tor index datasets, implying that this single variable captures
the most important dynamics pertaining to future volatility
prediction, and allows for the simplest form of the model.
Owing to the normalization of the SCC index by the maxi-
mum possible size of the network, both the SCC index esti-
mated from 47 stocks and the one estimated using 9 sector
indices perform very consistently with respect to the magni-
tude of the estimated coefficients. In addition, the fact that
the respective models fit very similarly indicates that the pro-
posed methodology captures common effects in the market,
observable from different datasets.

3.2. U.S. House Price Index. In addition to the financial mar-
ket data, we also perform our analysis on the U.S. house price
data, which consists of quarterly house price indices for 51
U.S. states from 1970 to 2017. We estimate the directed
dependency networks on a time window of T = 20 quarters
(5 years), and compare the calculated SCC index with the
overall house price index for the entire U.S. real estate market
in Figure 9.

It is evident from the results that the estimated SCC index
is high in the midst of the 2007–2009 housing bubble, indi-
cating that there were strong feedback components and
dependencies between the real estate prices in U.S. states.
We repeat the previous analysis and inspect the cross-
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Figure 7: The estimated SCC index and the product of the VIX
index and the SCC index as early-warning indicators for financial
crises, shown with the S&P 500 market index as a benchmark of
the U.S. stock market performance. The sector index data is only
available since 2000 (green lines), and the VIX data is available
since 1990, thus the VIX · S on the lower graph is only displayed
from that point on—the time frames are nevertheless kept the
same on both graphs for comparison.
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correlation between the estimated SCC index and the volatil-
ity of the U.S. HPI index, estimated on a rolling window of 5
years (i.e., 20 quarters)—the results are shown in Figure 10.

Even though the SCC index was estimated on a rolling
time window of length T = 20 quarters (i.e., 5 years), the
cross-correlation in Figure 10 suggest that it is predictable
for future volatility on a shorter time span, from 2 to 8 quar-
ters (half to two years). To measure the extent to which vol-
atility prediction is improved by including the SCC index, we
employ regressions on the future volatility of the U.S. HPI
index. To avoid overlapping windows in calculating input
and output variables (past and future volatility), we adopt a
2-year window (8 quarters) to estimate both the past volatil-
ity σt−2y t and the future volatility which is the dependent
variable in the model σt+2y t . The reduced model reads:
σt+2y t = β0 + β1σt−2y t . The expanded model includes the
SCC index: σt+2y t = β0 + β1σt−2y t + β2SHPI t . The results
of the performed regressions are given in Table 2.

The results suggest that a significant improvement in the
model is introduced by including the SCC index, indicating
our proposed indicator manages to capture these effects
and timely indicates the systemic risk associated with the
U.S. housing market. The strength of the relationship is sim-
ilar to the one found in financial market data in Section 3.1,
although volatilities are generally lower in real estate prices.
These results additionally support our hypothesis and extend
the applicability of our approach from stock market data to
economic complex systems such as the housing market.

4. Summary

In this contribution, we have analyzed directed dependency
networks of financial assets, estimated using information the-
oretic concepts of transfer entropy and mutual information.
We employed a resampling technique to remove the estima-
tion bias and obtain validated directed networks. Firstly, we
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Figure 8: Cross-correlation functions between the volatility of the S&P 500 index σ t and the SCC index S t (a), and the cross-correlation
function of the S&P 500 volatility and the VIX · S t indicator (b). The observed cross-correlation functions peak around τ = 150 for stocks
and τ = 250 for sector index data.

Table 1: Regression analysis of the developed SCC index on the future realized market volatility, using reduced (without the SCC index S) and
expanded (including S) models: without, with, and only using the interaction term VIX ⋅ S, performed on both the U.S. stocks and U.S. sector
index data. Coefficients significant at the 1% significance level are marked with an asterisk (∗). The respective adjusted R2 measures and the
Akaike information criterion (AIC) are also reported—including the AIC difference (Δ) from the null (reduced) model.

Model
Variable coefficients

R2
adj AIC (Δ)

σt−1y VIX S VIX · S

Stocks

Reduced 0.1∗ 0.0003∗ — — 0.29 −5.14 · 104 (0)
Expanded −0.16∗ 0.0003∗ 10.32∗ — −0.45 −5.31 · 104 (−1629)

Exp. with int. −0.16∗ 0.0003∗ 10.93∗ −0.032 0.45 −5.31 · 104 (−1629)
Int. only — — — 0.47∗ 0.40 −5.48 · 104 (−3368)

Sector indices

Reduced −0.04 0.0003∗ — — 0.22 −3.17 · 104 (0)
Expanded −0.034 0.0002∗ 10.23∗ — −0.50 −3.35 · 104 (−1811)

Exp. with int. −0.034 0.0002∗ 10.07∗ 0.007 0.50 −3.35 · 104 (−1809)
Int. only — — — 0.48∗ 0.39 −3.49 · 104 (−3266)

10 Complexity



found that the general predictability levels have been dimin-
ishing through the last decades in the U.S. stock market,
which is coincidental with the reduction in bid-ask spreads
and transaction costs, and may be interpreted as an indicator
of rising market efficiency. In addition, we examined the esti-
mated directed dependency networks for various periods in
time, and report that the networks exhibit strong connections
with feedback loops during periods of high volatility and
market crashes, as opposed to sparse networks estimated
during periods of stable market growth. To test the hypothe-
sis that information feedback in the financial network indi-
cates elevated systemic risk levels, we estimated directed
temporal networks on a rolling time window and identified
the strongly connected component (SCC) for each time step.
To estimate the contribution of the SCC to the entire system,
we define the SCC index as the sum of all SCC node outde-
grees, normalized by the maximum theoretical number of
links. Using stock market and real estate data, we show that
the SCC index can be used to timely indicate systemic risk
and predict future market volatility with a remarkable pre-
cision and consistently in all the considered datasets. These
results indicate that our methodology yields relevant infor-
mation for evaluating systemic risk in financial networks,
and may be useful for both academics and practitioners
as a tool for developing early-warning signals for future
market crashes.
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