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We review recent numerical simulations of several models of interface growth in d- 
dimensional media with quenched disorder. These models belong to the universality class of 

anisotropic diode-resistor percolation networks. The values of the roughness exponent 

(Y = 0.63 ? 0.01 (d = 1 + 1) and (Y = 0.48 2 0.02 (d = 2 + 1) are in good agreement with our 

recent experiments. The values of (Y in higher dimensions (a = 0.38 5 0.03 in d = 4 and 

[Y = 0.27 ? 0.05 in d = 5) do not support a recent theoretical conjecture. 

1. Introduction 

The growth of rough interfaces in random media is a topic of current 
interdisciplinary interest [l-5]. For the most part, two types of models have 
been applied to interface-roughening phenomena: (a) nonlinear Langevin 
equations - principally the KPZ equation [6] - resulting in self-affine interfaces, 
and (b) spreading and invasion percolation models [7], generating self-similar 
interfaces. 

The self-affine interface (a) can be characterized by the rms surface width 

w(e, t) = ([h(x, t) - (h(x, t))12) 1’2 . (1) 

Here h(x, t) is the surface height at time t, and the angular brackets denote the 
average over x belonging to a (d - 1)-dimensional hypercube of size gd-’ in 
the horizontal cross section perpendicular to the direction of growth. 

An alternative and equivalent quantity is the height-height correlation 
function ~(8, t). The scaling exponents obtained from w and c are believed to 
be identical, so we use them interchangeably. Analysis of the KPZ equation 
implies the scaling law [l-4] 

w(t, t> - 46 t) - eaf (S) , 
Elsevier Science Publishers B.V. 



S.V. Buldyrev et al. I Anisotropic percolation and surface roughening 201 

where 

(2b) 

and 

z=ldp. (24 

The roughness exponent is cy = l/2 and the dynamical exponent is p = l/3 for 

d = 1 + 1 [6]. N umerical studies of the KPZ equation give (Y = 2/(d + 2) in 

d 3 2 [g-lo]. 
On the other hand, approach (b) (percolation-type models) produces self- 

similar (fractal) interfaces [7], for which ~(4, m) - f? with (Y = 1 and p = 1. For 
many phenomena in d = 1 + 1 - from bacterial growth [ 111 and viscous flows 
[12,13] to the wetting [13-E] and burning [16] of paper-self-affine surfaces 
are found with anomalous exponents (Y and /3 significantly larger than the KPZ 
values but less than 1. Recent experimental data in d = 2 + 1 also show 
anomalously large values of (Y -for mountain surfaces (Y = 0.58 [17,18], for 
wetting of porous media (Y = 0.5 [19], and for ion beam erosion of metal 
surfaces (Y = 0.53 [20]. 

For the past two years, the following question has been addressed: Do these 
experiments, in fact, represent a crossover from self-affine to self-similar 
behavior, or is there a new universality class of growth models that produces 
self-affine interfaces with an anomalous (Y > 2/(d + 2)? 

As a step in answering this question, we develop and generalize several 
models [13,14,21-241 of spreading percolation with anisotropy in the growth 
direction which belong to a new universality class characterized by a self-affine 
interface with the roughness exponents given in table I. Together with J. 
Kertesz [25], we have been exploring the relation of this universality class to 

Table I 

Critical exponents and percolation thresholds pr, p:, p:, for models A, B and C. 

d 

1+1 2+1 3+1 4+1 

0.63 + 0.01 

0.63 k 0.01 
I 1.01 ? 0.02 

US”,” 1.46 5 0.02 

IS 0.60 5 0.03 
P: 0.4698 -c 0.0002 

PCB 0.5388 2 0.0002 
c 

PC 0.6447~ 0.0001 

0.48 k 0.03 0.38 * 0.4 0.27 2 0.05 

0.41 k 0.02 0.28 k 0.3 0.18 k 0.03 
1.16 k 0.03 1.32~ 0.5 1.50~0.10 

2.18 t 0.03 2.54 2 0.05 3.00 2 0.20 
1.14 f 0.06 1.6kO.l 1.920.2 
0.7423 r 0.0002 0.8423 2 0.0002 0.889 -c 0.0005 
0.8009 t 0.0002 0.8857 2 0.0004 0.9240? 0.0005 
0.9340 + 0.0003 0.9863 2 0.0004 0.9970 k 0.0005 
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the reversed percolation transition point [22-241 in the diode-resistor percola- 
tion network, at which the backflow current emerges in the direction opposite 
to the direction of diodes, when the concentration of resistors q approaches 
some critical value q, = 1 -p, (p = 1 - q is the concentration of diodes). In 
d = 1 + 1, this transition point is dual to the directed percolation point [22-241 
and the roughness exponent (Y of the interface between blocked and unblocked 
diodes can be expressed in terms of correlation exponents of directed 
percolation. 

In d > 2, little is known about the critical properties of this transition. 
Recently, several theoretical conjectures have appeared concerning the values 
of the critical exponents of the surface roughening models with depinning 
transition caused by the quenched noise for continuum systems [26,27]. The 
numerical data for the continuum models in d = 1 + 1 strongly support the 
argument that these models belong to the same universality class as discrete 
models described below. However, according to [26,27] d = 5 should be the 
upper critical dimension above which a = p = 0. Our numerical results do not 
support either of these conjectures. 

2. Models 

The models A, B and C we have studied are straightforward generalizations 
to d dimensions of the d = 1 + 1 models defined in [13,14,21,22]. In each model 
the porous media are simulated by a cubic lattice with certain fraction p of 
randomly blocked cells which represent the inhomogeneities of the media (see 
fig. 1). The horizontal cross section of the lattice is the (d - 1)-dimensional 
hypercube of volume L*-’ with periodic boundaries. Every lattice cell can be 
wet or dry. At t = 0, all lattice cells are dry except those with vertical 
coordinate h G 0. At every time step, we simultaneously examine all dry cells 
on the wet-dry interface and decide whether each of these cells should become 
wet on the next time step. The decision concerning each cell is taken according 
to the deterministic rules specific to each model. In analogy with spreading 
percolation [2,29], we define the tth shell as the set of cells that become wet on 
the tth time step. 

In model A, each cell adjacent to the interface becomes wet if (i) it is 
unblocked or if (ii) it lies below the unblocked cell, adjacent to the interface. 

In model B, the cell becomes wet if (i) it is unblocked and its nearest 
neighbor from below is wet or (ii) if the height of the highest wet cell in one of 
the nearest neighboring columns is larger then the height of the cell under 
consideration. 

In model C, rule (i) is the same as in model B, but rule (ii) is slightly 
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Fig. 1. Explanation of the surface growth models A, B and C in d = 1 + 1. Cells are randomly 

blocked with probability p (indicated by shaded area) or unblocked with probability 1 -p 
(indicated by a white area). Wet cells are marked by numbers indicating time step at which they 

have become wet. The line connecting the centers of the dry blocked cells indicates the spanning 

path of directed percolation that has stopped the growth. (a) Model A, proposed by Buldyrev et al. 

[13,14] (p, = 0.4698); (b) model B proposed by Tang and Leschhorn [21] (p, = 0.5390); (c) model 

C proposed by Dhar et al. [22] (p, = 0.6447). The configuration of blocked cells is the same for all 

three models, thus the largest cluster of model C corresponds to the largest p,. In model C diodes 

correspond to blocked cells resistors to the unblocked cells. The order of wetting differs from the 

original definition of ref. [22] in order to prevent overhangs in the moving parts of the interface. 

These changes. however, do not affect the shape of the pinned interface, which in both cases is the 

path of the bond directed percolation of diodes on the dual lattice. 

different. The blocked cell with the coordinates (x1, x2, . . . , xd_*, h) becomes 
wet if its nearest neighbor from below is wet and at least one of the cells with 
the coordinates (x1 + Ax,, x2 + Ax,, . . . , .x~_~ + Ax~_~, h + Ah) is wet, where 
the increments Axi and Ah obey the following constraints: Ah 2 0, lAxi G 1; if 
Ah >O then it is sufficient that lAxi\ =S 1; if Ah = 0 then Axi = 0 or Axi = 
(-l)h+*Y Model C is in fact equivalent to the diode-resistor network in which 
each blocked cell corresponds to the diode, and each unblocked cell to the 
resistor connecting a pair of the opposite vertices of the cell. Each diode or 
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resistor has orientation (AX,, Ax,, . . . , Axd_ 1, -l), where Axi = -( - l)‘~+~ are 
determined by the coordinates of the cell (see fig. lc). 

Model A is analogous to spreading percolation (rule (i)) with erosion of 
overhangs (rule (ii)). In models B and C, the height of each column at each 
time step can increase only by one cell. In model A, the erosion of overhangs 
corresponds to much faster local growth. Also, in models B and C, the 
maximal difference in heights of the two neighboring columns is 2, while in 
model A, it can be any number. 

Model A was suggested by Buldyrev et al. [13-151, while model B was 
originally proposed by Tang and Leschhorn 1211 and can be considered as the 
discretized version of the Langevin equation with quenched noise and is very 
close to the models defined by Parisi [25] and Csahok et al. [26]. Comparison 
of the time development of all three models is shown in fig. 1 for the same 
d = 1 + 1 configuration of blocked cells. The growth of each model is stopped 
by the spanning paths of directed percolation of the blocked cells with different 
definitions of connectivity (shown as a fence connecting the centers of the 
blocked cells). In model A the path has five choices (North, South, East, 
North-East and South-East), in model B three choices (East, North-East and 
South-East), in model C only two choices (North-East and South-East). This 
results in different percolation thresholds: pp = 0.4698, p: = 0.539, p: = 

0.6447. Numbers on the cells show the time at which they become wet. The 
finite size corrections to scaling for these models have different values, but the 
asymptotic behavior is characterized by the same set of exponents. 

3. Dimension 1 + 1: theory and simulations 

In this section, we review theory and simulations for d = 1 + 1 [13-151. When 
the probability of blocked cells p is close to p,, the growth is halted in many 
places by the paths of a directed percolation cluster. Each path can be 
characterized by two correlation lengths, 5, and E,, . When the path is spanning, 
i.e. when the growth is stopped completely, t,, is equal to the system size L, 
and 5, is proportional to the width of the interface w. It is known from the 
theory of directed percolation [28,29] that the correlation lengths diverge in the 
vicinity of p,, 

5rIP-PcI-y~ Y 5,, - IP -PclrY” ) 

where y, = 1.733, vI = 1.097 [29]. Thus, 

W) 
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where 

(Y = V~ /y, = 0.633 + 0.001 . 

Thus the spanning path of directed percolation describes the final state of the 
paper wetting experiment [13,14], where the wetting front is completely pinned 
by inhomogeneities in the paper. The theoretical value of (Y (eq. (3~)) is in 
excellent agreement with both our simulations and our experiments [13-151. 

A natural question is “What is the dynamics of wetting?” To answer this, we 
study the dynamical behavior of the models below and above p,. Fig. 2 shows a 
snapshot of the wetting front as it continues to propagate in the (1 + l)- 
dimensional media when p <p,. Large sections of the interface are already 
pinned and the growth is occurring only in columns that contain unblocked 
cells on the wet boundary (shown as dark vertical lines). The average 
horizontal size of pinned sections is e,, , while the average vertical size of pinned 
sections is 5,. The moving parts have constant steep slope (in model B it is 
exactly equal to 2), and their vertical and horizontal dimensions are propor- 
tional to 5,. As was shown in [25], the height-height correlation function 
c(f?, t), calculated for such an interface for 4 -5, is proportional to 
e(3u-1)‘2a = f”.71. The effective roughness exponent of this moving interface 
calculated directly from our numerical data near criticality in d = 1 + 1 is 
(Y+ = 0.70 ? 0.05, which is in good agreement with the above geometrical 
arguments. The growth is now mostly a fast erosion of steep slopes, propagat- 

Fig. 2. Two successive snapshots of the interface of model A still evolving near its pinning 
threshold (p = 0.4698). System size is 212. (But the calculation is made for L ~2l’.) Upper 

snapshot (a) taken at t = 18000, lower (b) at t = 19500. Light color indicates wet area, dark color 

indicates dry area, dark strips indicates “live” columns, i.e. columns that contain cells which 
become wet at the current time step. Arrows show the direction of the propagation of steep 
eroding slopes, which has approximately equal horizontal and vertical dimensions both of the order 

of 5,. The horizontal dimension of the long blocked region is of the order of [,, , while its vertical 
dimension is of the order of 5,. 
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ing horizontally with constant speed. This observation implies that the 
dynamical exponent zdyn = cq+, l/3 has a value close to 1. Thus /3 = CQ~,,, in 
good agreement with our numerical results [16-181. This large value of Q,,, 
may explain the large values 0.7-0.8 found in dynamical experiments [ll-161. 

In the case d = 2 + 1 we find that for all studied models (Y = 0.48 + 0.02, 
/3 = 0.41? 0.02, z = 1.16 ? 0.02, while the results for p, are different (see table 
I). In d > 2 the duality to directed percolation breaks down and the growth of 
the surface is pinned by the self-affine hypersurfaces, which can be character- 
ized by horizontal and vertical correlation lengths t,, and 5,. (See ref. [30] for 
an isotropic model of percolating hypersurfaces.) 

Below criticality moving parts form steep circular terraces, surrounding 
pinned parts. However, the moving parts in d > 1 + 1 do not move along 
straight lines, but rather perform a kind of correlated random walk, which 
yields z > 1. At d = d,, z should become 2, as for uncorrelated random walk. 
So far, we find that even for d = 5, z = 1.5 + 0.1~ 2, suggesting that d, > 5. 

The effective roughness exponent found for the moving interface in d = 2 + 1 
near criticality is about 0.52 + 0.05, which is in good agreement with our 
experiments on wetting of 3D porous media [19]. 

4. Avalanches and fractal dust 

Above p,, the growth is stopped by the spanning path of a directed 
percolation cluster in d = 1 + 1, or by a self-affine surface in d = 2 + 1. 
However, we can modify our models and assume that even when the growth is 
completely stopped, the blocked cells on the interface may still erode-but at 
an infinitesimal rate. With this assumption, we can remove blocked cells at 
random when the interface is completely stopped. Each removal will produce 
an avalanche of growth which eventually will die out when front reaches 
another directed spanning path, or directed surface of blocked cells (see fig. 3). 

The distribution of avalanche sizes P(V) is found to be [15] 

P(V) - v-T~=‘F(v/vo) ) (44 

where V is the number of sites removed in an avalanche, and V, - L$‘~, is 
the characteristic volume. The probability P(V) is estimated to be the ratio of 
the number of avalanches of size V to the total number of avalanches. 

In d = 1 + 1, the maximum linear extent of the avalanches (fig. 3), in the 
longitudinal and transverse directions, is found to scale with exponents 

zqal= 1.73 * 0.02 ) vyal = 1.10 -+ 0.02 ) (4b) 
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Fig. 3. Successive series of pinned interfaces of model A, showing the boundaries of avalanches, 
produced by removing a randomly chosen blocked cell from the previously pinned interface. 
L = 400, p = 0.5 >p,. Correlation lengths r,, and 5, are the typical sizes of the avalanches. 

in excellent agreement with the correlation-length exponents of directed 
percolation. Moreover, we find 

7 aval = 1.245 + 0.02. (4c) 

From avalanche studies in d = 2 + 1 we find the correlation-length and 
roughness exponents to be v,, = 1.06 + 0.1, vI = 0.47 + 0.1, which gives slightly 
smaller values of LY than from analysis of height-height correlation function 
and width: (Y = V, /v,, = 0.44 + 0.1. This may be due to large error bars that are 
caused by comparatively small errors in the value of p,. 

An alternative way of producing avalanches is to start growth from a single 
unblocked cell at time t = 0 when interface is flat (see fig. 4). Above p,, the 
clusters of wet cells will be all pinned by the blocked cells. Below p, some of 
these clusters will grow infinitely, but some will be stopped by the pinning 
surfaces. In analogy with conventional percolation, the survival probability 
P,,,,(t) of the clusters for t < t, will decay as a power law, P,,,Jt) - t’-7surv. 

Here t, is the characteristic time which is related to the correlation lengths: 

511 -G, 5, -t{. The exponent 7S,rV is related to the T,,,, of eq. (4): 

(r,,,, - 1) = (T,,,, - l)(d - 1 + a)/~ . (54 

For t > to, J’,,,, (t) either goes to zero exponentially for p >p, or approaches a 
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Fig. 4. Horizontal projection of the cluster of model B (p = 0.8009 =p,) which was started at the 
center of the screen 21° time steps ago. The current diameter of the cluster is about 21°. The blue 

area shows the flat interface that is left dry since the beginning of the process. Darkest shades of 

gray correspond to the largest heights of the interface. Red dots forming “fractal dust” indicate 

cells that become wet at the current time step. 

constant value P(m), the probability of an infinite cluster, for p <p,. Thus, 

studying P,,,,,(t) provides very accurate method of estimating p,. The critical 

exponents can be derived from the parameters of the clusters exactly at p,. 

One of these exponents is the exponent S that characterizes the time 
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dependence of the size of the percolation shell: n(t) - t’. It is possible to 
connect this exponent with z and (Y: 

s + 1= (d - 1-t a)/2 . (5b) 

In d = 1 + 1, since z = 1, 6 = (Y = /?, which agrees with the simple geometrical 
picture (see fig. 2) that the projection of the shell corresponds to the length of 
the largest steep moving terrace, which scales as the vertical size of the whole 
system w(t) - to. We have studied the time dependence of the size of the shell 
n(t) - t* numerically. The results are in agreement with the above relations. 

The projection of the shell forms a fructul dust (see figs. 2 and 4). In 
d = 1 + 1, when z = 1, the fractal dimension of this dust d, is connected to the 
exponent of distributions of avalanches (i.e. blocked regions) through the 
relation 

d, = rsurv - 1 = 0.46 ? 0.02. (6) 

Note that d,< 6, which means that, in fact, fractal dust is packed in moving 

blocks (the largest moving block is about of the vertical system size w(t)). 

These moving blocks behave like quasi-particles which are distributed in a 
fractal way with fractal dimension equal to d,. Direct numerical studies of the 
correlation function of the dust support this point of view. 

5. Discussion 

We have studied several models of surface growth in the quenched dis- 
ordered media near the pinning threshold. These models are in the universality 
class of the diode-resistor reverse percolation. Numerical results are in good 
agreement with anomalously large values of the critical exponents, obtained in 
many experiments in d = 1 + 1 and d = 2 + 1. The importance of quenched 
noise and pinning as a mechanism of surface roughening was suggested by 
several authors [26,27,31,32] which studied the continuum Langevin equations 
with quenched noise as models of surface growth. Our numerical results are in 
rather good agreement with the numerical results of those authors in d = 1 + 1. 
The differences in the values of exponents (less than 10%) may be explained 
by correction to scaling. Models A, B and C that we have studied here have 
strong corrections to scaling, but for large system sizes and times approach the 
same asymptotic behavior#’ . 

*I In d = 1 + 1, these correction vanishes for the systems of the order 214. In d = 2 + 1 and 

d = 3 + 1, they become negligible when L = 29 and L = 2’, respectively. In d = 4 + 1, they are 

present even for L = 25, which is the upper limit in our computational capacities. 
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