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We study a variant of the Zhang model [Y.-C. Zhang, J. Phys. (Paris) 51, 2113 (1990)],
ballistic deposition of rods with the length / of the rods being chosen from a power-law distribu-
tion P(/)~I~'"#. Unlike in the Zhang model, the site at which each rod is dropped is chosen
randomly. We confirm that the growth of the rms surface width w with length scale L and time ¢
is described by the scaling relation w(L,t) =L°w(¢/L%?), and we calculate the values of the
surface-roughening exponents a and B. We find evidence supporting the possibility of a critical

value p. =5 for d=1, with a=7% and =% for u > u,, while for u < ., @ and B vary smoothly,

attaining the values a=pg=1 for u =2.

It is generally believed that a variety of different mod-
els' * of randomly growing rough surfaces can be de-
scribed in terms of the Kardar-Parisi-Zhang equation >

oh(x,t) _
ot

Here h(x,t) is the height of the surface at time ¢ and posi-
tion x and n(x,¢) is a random noise term. One such mod-
el is ballistic deposition,” for which the surface width
seems to follow a scaling form

Vih+ A (Vh) 2+ n(x,1) . n

(2a)

w(L,t)=L°f

5
LB |-
Thegexponents a and B satisfy the general scaling rela-
tion®?

ata/p=2 (2b)

and can be calculated exactly for d=1 in the case of nor-
mally distributed uncorrelated noise n(x,t),

(2¢)

Recent experiments on surface growth display ex-
ponents quite different from those of (2¢): for wetting in
a porous medium'® ¢=0.73+0.003 and'' «=0.81,
B=0.65; while for growth of bacteria colonies,'?
«=0.78 £0.06.'> Recently Zhang'4~'® suggested that
the anomalous roughening seen in the experiments might
arise from noise n(x,z) which is spatially uncorrelated
but with amplitude obeying an algebraic or “power-law”

1 —_
a=73, B=73.
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distribution,
1
P(n>¢)= —57 . (3)

He studied this model numerically using a discrete version
of Eq. (1), which can be considered also as a version of
simultaneous ballistic deposition with switching between
even and odd sublattices after each time step.

A mean-field theory, 16,17 which can incorporate a
power-law distribution of noise such as (3), predicts the
existence of a critical value u., with the property that for
u = u. the large values of n are sufficiently rare that they

do not affect @ and B, and Eq. (2¢) holds. Below
1. =2d+ 3 the exponents follow the formulas
d+2 d+2
= = . 4
u+1’ A 2u—d @

For d =1, (4) predicts a critical value of 4. =5. However,
preliminary calculations on the Zhang model'* !¢ and the
related problem of directed polymers'® show no sign of a
well defined u..

Here we present simulations on a variant of the Zhang
model in which the site at which each rod is dropped is
chosen randomly; we find values of a and B that are
slightly different than those calculated by Zhang and in
particular our calculations suggest the existence of a criti-
cal value of u, u.=5.

Our model is defined as follows. Consider a d=1 lat-
tice of L sites with the height function A (x,?) defined on
each site, 1=<x=<L. At t=0, h(x,t)=0 for all x.
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Growth proceeds by the following rules: (i) Choose ran-
domly a position x from 1 < x < L at which a rod will be
dropped. (ii) Choose the length / of the rod using

I=lu~'"", )

where 0 < u <1 is a random variable distributed uniform-
ly and [u ~'/#] denotes the largest integer number which
is less than or equal to u ~"/#. (iii) Attach the rod onto
the highest point of the surface at the given location x ac-
cording to the rule

h(x,t+1)=max[h(x,0),h(x+1,0)—1,
h(x—1,0)—11+1. 6)

(iv) The values of 4 in all other sites remain the same, and
periodic boundary conditions are taken at the edges.
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Our model : u=3 ,t=281 , L=512.

FIG. 1. Anomalous ballistic deposition with power-law noise
(3): (a) the present model, and (b) the Zhang model for the
case p=3 and L =512, at time ¢ =281; the large rod appeared
at 1 =206.

In order to make the time scale identical with that of
the Zhang model, we measure the time in Monte Carlo
steps per site; i.e., we choose the unit of time to be equal to
L so that exactly L rods are deposited during each unit of
time.

The underlying role of the rare events is the same for
both models: long rods produce big jumps in the surface,
which initiate laterally propagating perturbations. How-
ever, the surface structure we obtain differs somewhat in
visual appearance from those we find using the Zhang
model (Fig. 1).

We carried out simulations for a sequence of values of
both of the two parameters L and 7. Since the results are
dominated by rare events, we carried out large numbers N
of runs for each pair (L,z).'°

We analyzed our results by calculating both the rms
width defined by?°

1 &1 & [
w(L,t)= Wigl zxgl h,-(x,t)
L 2 1/2
-—%Zlh;(y,t) ” , (7a)
=

and the height-height correlation function

L3

C(L,t,A)= N2

1 L
ngl [h,' (x,t)

1/2
—hi(x+A,t)]2” (7b)

The typical behavior of w(L,?) for fixed L is characterized
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FIG. 2. Estimating B for the case u =4. Dependence on the
variable 1/LY of the function Ber(L) defined in (8) for the choice
w=7; the estimate of 8=0.37 is given by the intercept at
1/L =0. Other choices of w fit less well to a straight line but
1

give similar values of 8 (e.g., 8=<0.38 if y =7 and B=0.36 if
B=1).
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by power-law behavior w~¢# for 1<t <tx(L) and a
time-independent value w(L,0)~L% for t>tx(L).
Here t x (L) ~ L%* is the crossover time.

To test for the existence of a critical value u., we ex-
plored several methods for calculating the anomalous-
roughening exponents a and . We found that to obtain
accurate values required judicious extrapolations in the
parameters L, ¢, and A.

(a) B. To obtain B, we first calculated effective L-
dependent values Beg(L) for each system size L. Since for
very small ¢ the behavior is not w~t#, it was necessary to
average successive slopes of a sequence of time intervals,
excluding those near t=0 and those in the vicinity of
t=tx. We found that our successive estimates B.g(L)
vary smoothly with L, and could be extrapolated using the
formula

k
Ber(L) =p— —le . ®)

The best fit was found with y = § (see Fig. 2), but the re-
sults for B obtained with other values of y are within the
error bars we quote. 2!

(b) a. To obtain a, we must first obtain accurate esti-
mates of w(L,o). We found [Fig. 3(a)] that for a fixed
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FIG. 3. Estimating a for u =4. (a) Extrapolation of w(L,t)
vs 1/t for L =1024, u=4 [cf. Eq. (9)]. (b) Double-log plot
showing the L — dependence of extrapolated width w(Z,o) on
L. The slope of the straight line shown corresponds to the extra-
polated value of a =0.54.

value of L, we could fit w(L,¢) for >t with the expan-
sion
k>
lnw(L,t)zlnw(L,w)—'t;.-. )
The best fit was found with y'= 1, but the results for a
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FIG. 4. (a) Comparison of our results on exponents a(0J) and
B(0) with the prediction (4) of the mean-field theory for a (dot-
ted line) and B (solid line). (b) Check of the scaling relation
(2b) relating the exponents a and B. (c) Test of the scaling rela-
tion (2a) for 4 =S5 using the ‘““classical” exponent values, a =+
and B=§ for different system sizes L =128 (a), 256 (O), 512
(+), 1024 (x), and 2048 (0).
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obtained with other values of y' are within the error bars
we quote. We plot [Fig. 3(b)] the sequence of estimates
w(L,o) obtained from (9) against L and the slopes of
successive pairs of points of this plot were then extrapolat-
ed against 1/L to obtain a value of a appropriate to the
L— oo limit. %2

Figure 4(a) shows the comparison of our results for
different values of u with the mean-field prediction (4). It
can be seen clearly that for 4= u.=5 both a and B are
almost independent of p and are very close to a=71,
B=+%. For u<u, both exponents deviate from their
“classical’” values and approach the limiting values a =1,
B=1 predicted by the mean-field theory for u=2. We
also confirmed that our numbers are consistent with the
scaling relation a+ a/B =2 [Fig. 4(b)], and that for u =5
w(L,t) obeys (2a) with classical exponent values.given by
(2¢) [Fig. 4(c)].

Thus our results are consistent with the prediction of
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the mean-field theory (4) that there exists a critical value
of u=u.=5.0 *93 above which the anomalous-
roughening exponents take on their classical values a = +
and 8= LoItis possible that u. <5, but not likely that u.
is much greater than five as recently claimed by others. !>
The deviations from the mean-field predictions that we
find for 2 < u < u. may be due to inaccuracies in our ex-
trapolation procedures, or to the fact that the theory is
only approximate. Even the largest systems studied
(L=2'%) were not large enough to determine the ex-
ponents directly, which is the reason that we have used
various extrapolation procedures.
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