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Abstract. We study the optimal distance �opt in random networks in the presence of
disorder implemented by assigning random weights to the links. The optimal distance
between two nodes is the length of the path for which the sum of weights along the path
(“cost”) is a minimum. We study the case of strong disorder for which the distribution
of weights is so broad that its sum along any path is dominated by the largest link
weight in the path. We find that in Erdős-Rényi (ER) random graphs, �opt scales as
N1/3, where N is the number of nodes in the graph. Thus, �opt increases dramatically
compared to the known small world result for the minimum distance �min, which scales
as log N . We also find the functional form for the probability distribution P (�opt) of
optimal paths. In addition we show how the problem of strong disorder on a random
graph can be mapped onto a percolation problem on a Cayley tree and using this
mapping, obtain the probability distribution of the maximal weight on the optimal
path.

1 Introduction

Much attention has been focused on the topic of complex networks characterizing
many biological, social, and communication systems [1–3]. The networks can be
visualized by nodes representing individuals, organizations, or computers and
by links between them representing their interactions. The classical model for
random networks is the Erdős-Rényi (ER) random graph where two nodes are
chosen randomly from the total N nodes in the system and are connected by a
link [4]. An important quantity characterizing networks is the minimum distance
�min between two nodes in the network. For the Erdős-Rényi random graph, �min
scales as logN , consistent with the “six degrees of separation” concept (e.g., if
N = 106, � ≈ 6).

Here we study a more realistic problem in which all links are not assumed
to be equivalent. Hence we assign to each link a weight or “cost.” For example,
the cost could be the time required to transit the link, e.g., there are often many
traffic routes from point A to point B with a set of delay times τi associated with
each link along the path. The fastest (optimal) path is the one for which

∑
i τi is

a minimum, and often the optimal path has more links than the shortest path.
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If the distribution of weights is such that all the links have the same weight,
the average length of the optimal path between any two nodes is the minimal
length �min. In that case it is well known that �min ∼ logN [5]

If the distribution is narrow, the average length of the optimal path �opt, in
general, is greater than �min but scales the same as �min [6,7]. If the random
distribution is broad, in the limit of infinite broadness, the disorder is called
“strong” and only the largest weight in the path dominates the sum. The strong
disorder limit is implemented by assigning to each link a potential barrier εi
so that τi is the waiting time to cross this barrier. Thus τi = eβεi , and the
optimal path corresponds to the minimum (

∑
i τi) over all possible paths. When

β = 1/kT → ∞, only the largest τi dominates the sum. Thus T → 0 (very low
temperatures) corresponds to the strong disorder limit.

We focus here on the case of strong disorder. This is believed to be the case
for many computer and traffic networks, since the slowest link in communication
networks determines the connection speed. We study this problem both theo-
retically and numerically and find that for ER random graphs �opt, the average
length of the optimal path, scales as N1/3.

2 Theoretical Arguments

To obtain the optimal path in the strong disorder limit, we present the following
theoretical argument. It has been shown [8,9] that the optimal path for β →∞
between two nodes A and B on the network can be obtained by the following
algorithm:

1. Sort the links by descending weight.
2. If the removal of the highest weight link will not disconnect A from B –

remove it.
3. Go back to step 2 until all links have been processed.

Since the link weights are random, so is the ordering. Therefore, in fact, one
needs not even select link weights to begin with. This “bombing” algorithm can
be replaced by simply removing randomly chosen links one at a time, where an
link is not removed if its removal will cause the connectivity between A and B
to be lost. The final path left is the optimal path between A and B in the limit
β →∞.

Since randomly removing links is a percolation process, the optimal path
must be on the percolation backbone connecting A and B. Since the network
is not embedded in space but has an infinite dimensionality, we expect from
percolation theory that at criticality loops are not relevant and the random
graph can be approximated by a Cayley tree with a Poisson degree distribution.
Thus, the shortest path must be the same as the optimal path. It is also known
from percolation theory on the Cayley tree that at criticality the average mass
S of the cluster with �min branching generations scales as �2min [10]. Since the
mass S of the giant component of the graph scales at criticality as N2/3 [11], it
follows that
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Fig. 1. The optimal path length 〈�opt〉 averaged over 105 realizations of strong disorder
as a function of N1/3 computed by the two methods discussed in the text:(i) the results
obtained using the “bombing” approach (◦) and (ii) the results obtained using the
ultrametric approach (×).The straight line is the linear fitting of the results showing
for large N the linear relation 〈�opt〉 = 3.27N1/3 − 7.11. This result supports the
theoretical value 1/3.

�min ∼ �opt ∼
√
S ∼ Nνopt , (1)

where νopt = 1/3 [12].
To test (1), we apply two numerical approaches (Fig. 1). The first approach

is to find the optimal path (which minimizes the sum of weights) using the
ultrametric approach described in [8]. The second approach is based on the
“bombing” algorithm of [8].

3 Numerical Analysis

Next we describe in detail the two numerical methods for computing �opt between
any two nodes in strong disorder. We can assume that the energy spectra εi is
discrete. We can make β so large that, even for the closest values of energy
spectra, the waiting times τi = exp[βεi] differ by at least a factor of 2. In this
limit, the sum is dominated by the maximum value exp[βεmax]. When all the
links on the paths have different weights, the optimal path is the one that has the
smallest maximal link weight between all the paths. In general, as a consequence
of the existence of loops, there are links in common between different paths. Such
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a link might provide the maximum εi of both paths. In this case we compare
the second highest weight and take the path with the lower value and so forth
until the optimal path is determined. This procedure is equivalent to comparing
integers written in binary codes and hence indeed minimizes

∑
τi for β →∞.

First, we describe the ultrametric algorithm [9]. We assign weights to all the
links τi = exp[βεi], where 0 ≤ εi < 1 is taken from a uniform distribution. Next,
we start from one node (the origin) and visit all the other nodes connected to
the origin using the Dijkstra algorithm [13]. If a node at distance �0 (from the
origin) is being visited for the first time, this node will be assigned a list S0
of weights τ0i, i = 1 · · · �0 of the links by which we reach that node sorted in
descending order,

S0 = {τ01, τ02, τ03, . . . , τ0�0}, (2)

with τ0j > τ0j+1 for all j. If we reach a node for a second time by another path
of length �1, we define for this path a new list S1,

S1 = {τ11, τ12, τ13, . . . , τ1�1}, (3)

and compare it with a S0 previously defined for this node.
Different sequences can have weights in common because some paths have

links in common, so it is not enough to identify the sequence by its maximum
weight; in this case it must also be compared with the second maximum, the third
maximum, etc. We define Sp < Sq if there exists a value m, 1 ≤ m ≤ min(�p, �q)
such that

τpj = τqj for 1 ≤ j < m and
τpj < τqj for j = m, (4)

or if �q > �p and τpj = τqj for all j ≤ �p.
If S1 < S0, we replace S0 by S1. The procedure continues until all paths have

been explored and compared. At this point, S0 = Sopt, where Sopt is the sequence
of weights for the optimal path of length �opt. In reality it is highly inefficient
to compare all possible paths. This is why we use the Dijkstra algorithm. The
Dijkstra algorithm explores only a limited set of paths, guaranteeing that the
optimal path belongs to this set. The algorithm is implemented as follows. At the
beginning we assign to every node i except one that we choose as our “origin”,
a value Si = {∞}. The origin is assigned a value S0 = {0}. The search for the
optimal path follows a procedure akin to “burning” where the “fire” starts from
our chosen origin. In the first step, we burn all the neighbors of the origin and
replace the values assigned to them by the weight of the link that connects them
to the origin. For example, if node i is a neighbor of the origin connected to it
through a link which carries weight 10, then Si = {10} after the first step. At
this point all the neighbors of the origin form what we call the “burning set”
and the origin is deemed “extinguished”. Now the algorithm proceeds as follows.
That member of the burning set, which has the lowest value of Si assigned to it,
is deemed extinguished, and the same burning procedure starts with the node
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i as the origin. The only difference is that now we burn a node j if and only
if its weight sequence Sj is larger than Si

⋃
τij , where τij is the weight of the

link connecting nodes i and j and
⋃

denotes conjunction. If node j is already
burning, we do not include it into the burning set again, but just replace its
Sj with Si

⋃
τij . This procedure guarantees that a node, once extinguished, can

never again become part of the “burning set”. Moreover the weight sequence Si
for an extinguished node yields weight of the optimal path connecting it with the
origin. Once Dijkstra algorithm is completed, we have a minimal spanning tree
[14] constructed on our graph. Dijkstra algorithm in the strong disorder limit is
also equivalent to that of invasion percolation [15,16].

Using this method, we obtain systems of sizes up to 4000 nodes, typically
105 realizations of disorder. We compute 〈�opt〉 by averaging the length of the
optimal path for all the nodes of the configuration and over all realizations.

An alternative method of obtaining the optimal path in strong disorder is
called the “bombing” algorithm [8]. We first choose a pair of nodes on the graph
and begin removing links randomly, making sure that the connectivity between
the two chosen nodes is not destroyed as each link is removed. The last path
remaining is equivalent to the optimal path obtained by the ultrametric algo-
rithm.

The bombing algorithm is slow, as one must test the connectivity after re-
moval of each link. To improve the speed, we first find the minimal path in the
graph and then select links in random order. We remove the selected link from
the graph. If the removed link belongs to the minimal path, we check if the con-
nectivity between the two nodes is still present and recompute the new minimal
path. If the connectivity between the two nodes is destroyed, we restore the link.

The advantage of this procedure is that one has to test for connectivity
only if the selected link appears to belong to the minimal path. Since checking
the connectivity is the most time consuming part in the original “bombing”
algorithm, we could reach systems of sizes up to 217 nodes with 105 realizations
of weight disorder.

Figure 1 demonstrates that both algorithms yield very similar results, sup-
porting the theoretical result 〈�opt〉 ∼ N1/3. Indeed, numerical values of 〈�opt〉
averaged over 105 realizations of disorder have a linear behavior as a function of
N1/3, confirming the theoretical value νopt = 1/3.

We also study the probability distribution P (�opt) of optimal path lengths on
the network. The scaled curve for P (�opt) for different network sizes is shown in
Fig. 2 on a log-log plot. We find that there are two regimes in this distribution,
the first one being a power law P (�opt) ∼ (�opt)α which is evident from the
figure, with α ≈ 2. The second regime can be well approximated by a stretched
exponential P (�opt) ∼ e−C�

θ
opt where C is a constant and θ is close to 2. This

leads us to the conjecture that the distribution may have a Maxwellian functional
form:
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Fig. 2. Scaled probability distributions P (�opt) of optimal path lengths for network
sizes N = 210, 211, . . . , 217. The curve represents a Maxwellian fit given by (5).

P (�opt) =
4�2opte

−(�opt/lo)2

√
πl3o

, (5)

Where lo =
√
π〈�opt〉/2 is the most probable value of �opt. The solid line in the

figure is the plot of this function and as seen it agrees well with our numerical
results, especially for large N .

Finally, we repeat our simulations for the case in which disorder weights are
associated with the nodes of the graph, and obtain the same scaling laws as for
the disordered links case.

It should be pointed out that the above results concerning �opt practically do
not depend on the average degree 〈k〉 of the random graph for large 〈k〉  2 and
are the same even for the complete graph with k = N − 1. However, as we will
see in the next section, the distribution of the maximal weight τmax drastically
depends on 〈k〉.

4 Probability Distribution of the Maximal Weight
on the Optimal Path

Now, we address another aspect of the problem, which is the probability distri-
bution of the maximal weight τmax or equivalently the maximal random number
εmax along the optimal path in a strongly disordered random graph. As we men-
tioned earlier, the problem of the optimal path on a random graph in the strong
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disorder limit can be mapped onto a percolation problem on a Cayley tree with
a degree distribution corresponding to the random graph and with a fraction p
of its links conducting. In order to further develop this analogy, we will show
that the distribution of the maximal random number εmax along the optimal
path can be expressed in terms of the order parameter P∞(p) in the percola-
tion problem on the Cayley tree, where P∞(p) is the probability that randomly
chosen node on the Cayley tree belongs to the infinite cluster. The motivation
for the mapping on the Cayley tree comes from the following. Suppose A and
B are two nodes in the random graph. Now, if we start our search for the op-
timal path between nodes A and B beginning at node A, then in the limit of
the graph being of infinite size, the probability that we will visit a previously
visited node after a finite number of steps tends to zero. Hence, we can assume
that our search is equivalent to the search on a Cayley tree. If the original graph
has a degree distribution pk, the probability that we reach a node with a degree
k by following a randomly chosen link on the graph, is equal to kpk/〈k〉, where
〈k〉 ≡∑∞

k=0 kpk is the average degree. This is because the probability of reaching
a given node by following a randomly chosen link is proportional to the number
of links or the degree k of that node. Also, if we arrive at a node with degree
k, the total number of outgoing branches is k − 1. Therefore, from the point
of view of the branching process [17–22] represented by the Cayley tree , the
probability to arrive at a node with k − 1 outgoing branches (descendants) by
following a randomly chosen link is kpk/〈k〉.

In the asymptotic limit, where the optimal path between the two points
is very long, the probability distribution for the maximal weight link can be
obtained from the following analysis. Let us assume that the probability of not
reaching the nth generation of descendants starting from a given node of the
Cayley tree whose links conduct with a probability p, is Qn. Suppose we are at
a node whose outgoing degree is 2. Then the probability that starting from this
node, we will not reach the nth generation of its descendants is the sum of three
terms:

1. The probability that both outgoing nodes are not conducting : (1− p)2
2. The probability that both outgoing links conduct, but the nodes reached by

following them, do not have n− 1 generations of descendants : p2Q2
n−1

3. The probability that one of the two outgoing links conduct but the node
reached by following the conducting link does not have n− 1 generations of
descendants : 2(1− p)pQn−1

Therefore, in this case

Qn(p) = (1− p)2 + p2Q2
n−1 + 2(1− p)pQn−1 (6)

which on simplification becomes

Qn(p) = ((1− p) + pQn−1)2. (7)

Following this argument for the case where a node has m outgoing links, the
probability that starting from this node, we can not reach n generations, is
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Qn(p) = ((1− p) + pQn−1)m. (8)

Now in the case of a Cayley tree with a variable degree such as ours, we also
have to incorporate a factor which accounts for the probability that the node
under consideration has a given number of outgoing links. Thus for a node on
the Cayley tree, the probability that it does not have descendants in the nth
generation can be obtained by applying a recursion relation

Ql(p) =
∞∑

k=1

pkk((1− p) + pQl−1)k−1/〈k〉 (9)

for l = 1, 2, ..., n and the initial condition Q0 = 0, which indicates that a given
node is always present in generation zero of its descendants.

A randomly chosen node A of a random graph has k outgoing links with
probability pk which differs from the corresponding probability on the Cayley
tree, (k + 1)pk+1/〈k〉. Thus this node has a slightly different probability Q̃n of
not having descendants in its nth generation:

Q̃n(p) =
∞∑

k=1

pk((1− p) + pQn−1)k. (10)

If we denote by fn(p) , the probability that starting at a randomly chosen
node we can reach, or survive up to, the nth generation, then

f̃n = 1− Q̃n, fl = 1−Ql (11)

for 0 ≤ l < n and hence,

f̃n = 1−
∞∑

k=1

pk(1− pfn−1)k (12)

while for 1 ≤ l < n

fl = 1−
∞∑

k=1

pkk(1− pfl−1)k−1/〈k〉 (13)

and f0 = 1.
If n goes to infinity, this formula converges exponentially to the probability

P∞(p) ≡ liml→∞ fl(p) for a node to be connected to infinity for any p except
for pc = 〈k〉/∑∞

k=1 pkk(k− 1), where the convergence is a power law [17]. Anal-
ogously, we define the probability that node A on a random graph is connected
to infinity as P̃∞ ≡ limn→∞ f̃n. In the asymptotic limit of the optimal path
problem, we have a pair of nodes A and B separated by a very long path �opt
on a giant component of a random graph. The probability Π(p), that they will
be connected at given p, provided that they are connected at p = 1, can in fact
be approximated by the probability that both of them are connected to infinity
and hence
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Fig. 3. The probability distribution of the maximal random number εmax along the
optimal path obtained using simulations on a random graph with 〈k〉 = 4 (◦) and
using the analytical method on a Cayley tree with Poisson degree distribution and
〈k〉 = 4 (line).The simulations involve 105 network realizations and are carried out on
a network of 216 nodes. The distribution of εmax for small �opt does not obey (17), since
it is derived in the limit of large �opt. Also the distribution of εmax does not obey (17)
for very large �opt when the effect of finite size N becomes evident. Thus, to achieve
the best agreement with (17), we construct the histogram of εmax only if �opt is in the
range 40 < �opt < 120.

Π(p) =
[
P̃∞(p)/P̃∞(1)

]2
. (14)

Using (13) in the limit l → ∞, for the Poisson degree distribution pk =
xke−x/k! with x ≡ 〈k〉, we conclude that P∞(p) must satisfy the following
transcendental equation

P∞(p) = 1− e−〈k〉pP∞(p), (15)

which always has a trivial root P∞ = 0. For p > pc = 1/〈k〉, (15) has a positive
root, which gives us the required solution for P∞(p) > 0. For p ≤ pc, positive
roots do not exist and P∞(p) = 0. Finally, using (12) and (14), we have

Π(p) =
[
1− e−〈k〉pP∞(p)

]2
/
[
1− e−〈k〉P∞(1)

]2
, (16)

where P∞(p) and P∞(1) are the solutions of (15).
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In the bombing algorithm, the largest random number on the path, εmax,
is equal to the fraction of remaining bonds at which the connectivity would be
lost for the first time, if we remove bonds in the descending order of ε. Thus
the probability P (εmax ≤ p) that connectivity is not lost when only a fraction
p of bonds remains is equal to Π(p). The probability density of the maximum
random number εmax is thus equal to the derivative of this function with respect
to p:

P (εmax) =
d

dp
Π(p)|p=εmax (17)

In Fig. 3 we compare the probability distribution of εmax computed by sim-
ulations on a strongly disordered random graph with 〈k〉 = 4 and the analytical
Cayley tree approximation given by (16) and (17) with a Poisson degree dis-
tribution and 〈k〉 = 4. The curves coincide very well, indicating the excellent
agreement between the theoretical analysis and simulation.

Acknowledgements

We thank A.-L. Barabási for helpful discussions, and the ONR and Israel Science
Foundation for financial support.

References

1. R. Albert and A.-L. Barabási, Rev. Mod. Phys. 74 (2002) 47–97.
2. J. F. F. Mendes, S. N. Dorogovtsev, and A. F. Ioffe, Evolution of Networks: From

Biological Nets to the Internet and the WWW (Oxford University Press, Oxford,
2003).

3. R. Pastor-Satorras and A. Vespignani, Evolution and Structure of the Internet: A
Statistical Physics Approach (Cambridge University Press, in press).
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14. R. Dobrin and P. M. Duxbury, Phys. Rev. Lett. 86 (2001) 5076.
15. A.-L. Barabási, Phys. Rev. Lett. 76, 3750 (1996);
16. N. Schwartz, A. Nazaryev, and S. Havlin, Phys. Rev. E 58, 7642 (1998);
17. T. E. Harris, The Theory of Branching Processes, (Dover Publication Inc., New

York, 1989).
18. R. Cohen, S. Havlin, and D. ben-Avraham, in Handbook of Graphs and Networks,

edited by S. Bornholdt and H. G. Shuster (Willey-VCH, New York, 2002), Chapt. 4.
19. R. Cohen, K. Erez, D. ben-Avraham and S. Havlin, Phys. Rev. Lett. 85 (2000)

4626.
20. S. V. Buldyrev, S. Havlin, J. Kertész, R. Sadr, A. Shehter, and H. E. Stanley, Phys.

Rev. E 52 (1995) 373–388.
21. A.-L. Barabási. S. V. Buldyrev, H. E. Stanley, and B. Suki, Phys. Rev. Lett. 76

(1996) 2192–2195.
22. B. Derrida and H. Spohn, J. Stat. Phys. 51(1988) 817–840


	1 Introduction
	2 Theoretical Arguments
	3 Numerical Analysis
	4 Probability Distribution of the Maximal Weight on the Optimal Path

