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We study the recently introduced directed percolation depinning (DPD) model for interface
roughening with quenched disorder for which the interface becomes pinned by a directed percolation
(DP) cluster for d = 1 or a directed surface for d > 1. The mapping to DP enables us to predict some
of the critical exponents of the growth process. For the case of 1+ 1 dimensions, the theory predicts
that the roughness exponent « is given by a = v, /v, where v, and v are the exponents governing
the divergence of perpendicular and parallel correlation lengths of the DP incipient infinite cluster.
The theory also predicts that the dynamical exponent z equals the exponent dmin characterizing the
scaling of the shortest path on an isotropic percolation cluster. For the case of 1 + 1 dimensions,
our simulations give v = 1.73 £ 0.02, a = 0.63 & 0.01, and z = 1.01 & 0.02, in good agreement
with the theory. For the case of 2 + 1 dimensions, we find v = 1.16 + 0.05, a = 0.48 & 0.03, and
z = 1.15 £ 0.05, also in accord with the theory. For higher dimensions, o decreases monotonically
but does not seem to approach zero for any dimension calculated (d < 6), suggesting that the DPD
model has no upper critical dimension for the static exponents. On the other hand, z appears to
approach 2 as d — 6, as expected by the result 2 = dmnin, suggesting that d. = 6 for the dynamics.
We also perform a set of imbibition experiments, in both 1 + 1 and 2 + 1 dimensions, that can
be used to test the DPD model. We find good agreement between experimental, theoretical, and
numerical approaches. Further, we study the properties of avalanches in the context of the DPD
model. In 1+ 1 dimensions, our simulations for the critical exponent characterizing the duration of
the avalanches give Teurv = 1.461+0.02 and for the exponent characterizing the number of growth cells
in the interface § = 0.60 £0.03. In 2+ 1 dimensions, we find Teury = 2.18 +0.03 and 6 = 1.14 4 0.06.
We relate the scaling properties of the avalanches in the. DPD model to the scaling properties
for the self-organized depinning model, a variant of the DPD model. We calculate the exponent
characterizing the avalanches distribution 7avei for d = 1-6 and compare our results with recent
theoretical predictions. Finally, we discuss a variant of the DPD model, the “gradient DPD model,”
in which the concentration of pinning cells increases with height. We perform a set of experiments
in 14 1 dimensions that are well described by the gradient DPD model.

PACS number(s): 47.55.Mh, 68.35.Fx
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Recently the growth of rough interfaces has witnessed
an explosion of theoretical, numerical, and experimental
studies, fueled by the broad interdisciplinary aspects of
the subject [1-6]. Applications can be so diverse as imbi-
bition in porous media, fluid-fluid displacement, bacterial
colony growth, fire front motion, and the motion of flux
lines in superconductors [7-17].

In general, a d-dimensional self-affine interface, de-
scribed by a single-valued function h(z,t), evolves in a
(d + 1)-dimensional medium. Usually, some form of dis-
order 7 affects the motion of the interface leading to its
roughening. Two main classes of disorder have been dis-
cussed in the literature. The first, called thermal or “an-
nealed,” depends only on time. The second, referred to
as “quenched,” is frozen in the medium. Early studies
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focused on time-dependent uncorrelated disorder as be-
ing responsible for the roughening. Here we focus on the
effect of quenched disorder on the growth.

The roughening process can be quantified by studying
the global interface width

wir.=([Fes-io’] "),

where L is the system size, the overbar denotes a spatial
average, and the angular brackets denote an average over
realizations of the disorder. The study of discrete mod-
els [18-21] and continuum growth equations [22,23] leads
to the observation that during the initial period of the
growth, i.e., for t K t« (L), the width grows with time as

W) ~t? (t < ty), (1.2)

where (3 is the growth exponent. For times much larger
than ty, the width saturates to a constant value. It was
observed that the saturation width of the interface Wy,
scales with L as
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Wsat ~ La (t > tx), (13)

where a is the roughness exponent. The dependence of
tyx on L allows the combination of (1.2) and (1.3) into a
single scaling law [18]

W(L,t) ~ L* fi(t/tx), (1.4a)

where

ty ~ L*. (1.4b)
Here z = a/f is the dynamical exponent and f;(u) is a
universal scaling function that grows as u? when u < 1
and approaches a constant when u > 1.

An alternative way of determining the scaling expo-
nents is to study the local width w in a window of obser-
vation of length £ < L. The scaling law (1.4b) and the
fact that the interface is self-affine allow us to conclude

w(l,t) ~ €% f2(L/L), (1.5a)
where

L ~ 7 (B ty), (1.5b)
or

b ~L (> ty). (1.5¢)

Here f,(u) is a universal scaling function that decreases
as v~ when u > 1 and approaches a constant when
u <L 1.

The simulation of discrete models [18-21] gives expo-
nents in agreement with the predictions of phenomeno-
logical continuum approaches, such as the Edwards-
Wilkinson (EW) equation [22] and the Kardar-Parisi-
Zhang (KPZ) equation [23]. However, experimental
studies find exponents significantly larger than the pre-
dictions of theory, for example, for 1 4+ 1 dimensions,
Refs. [22,23] predict o = 1/2, but experiments show
a ~ 0.6—1.0 [7-17]. Although various explanations were
proposed — long-range correlations [24], power-law dis-
tribution [25] for the disorder, or coupling of the inter-
face to impurities [26] — it is currently accepted that
quenched disorder plays an essential role in those exper-
iments [13-17,27-41].

The presence of quenched disorder allows an interest-
ing analogy with critical phenomena. The continual mo-
tion of the interface requires the application of a driving
force F'. There exists a critical value F, such that for
f < F,, the interface will become pinned by the disorder
after some finite time. For F' > F, the interface moves
indefinitely with a constant velocity v. This means that
the motion of driven rough interfaces in disordered media
can be studied as a phase transition — called the depin-
ning transition. The velocity of the interface v plays the
role of the order parameter, since as F' — F.t, v vanishes
as

v~ f 07 (1’6)
where 6 is the velocity exponent and f = (F — F..)/F, is
the reduced force (Fig. 1).
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FIG. 1. Depinning transition. In the “pinned phase” (PP)
F < F,, the velocity of the interface is zero. In the “moving
phase” (MP) F > F., the interface moves with a constant
average velocity v. The velocity plays the role of the order
parameter of the transition.

For F — F., large but finite regions of the interface
are pinned by the disorder. At the transition, the char-
acteristic length £ of these pinned regions diverges,

E~F77,

where v is the correlation length exponent.

Several models in which quenched disorder plays an
essential role have been proposed recently [13-17,27-41].
For one class of models [13,14,27], in 1 + 1 dimensions,
a can be obtained exactly by mapping the interface, at
the depinning transition onto directed percolation (DP).
In higher dimensions the interface can be mapped to a
directed surface (DS) [15]. In 1 + 1 dimensions, DP and
DSs are equivalent. We refer to this class of models as the
directed percolation depinning (DPD) universality class.

Recent numerical studies [37], confirmed by analytical
arguments [38], showed that this class of models can be
described by a stochastic differential equation of the KPZ
type [36]

(1.7)

%}tf = F + V2h + A(Vh)? + n(x, h),

(1.8)
where 7(x, h) represents the quenched disorder and the
coefficient X of the nonlinear term diverges at the depin-
ning transition [37]. This equation was originally pro-
posed in the context of interface roughening in the pres-
ence of quenched disorder in Ref. [36]. The numerical
integration of (1.8) yielded exponents in agreement with
the calculations for the models in the DPD universality
class [36].

For a number of different models [28-33,39] belonging
to a second universality class — referred to as isotropic
growth — we have either A = 0 or A — 0 at the depinning
transition [37]. So, near the depinning transition, they
can be described by an equation of the EW type with
quenched disorder [42]
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% =F + V?h + n(x, h).

This equation has been studied by means of the func-
tional renormalization group [40,41], yielding a = ¢/3,
v=1/(2 - a), and z = 2 — 2¢/9, where ¢ =4 — d.

When F > F_, the size of the pinned regions in
the interface ¢ decreases to values much smaller than
the system size L. For length scales £ larger than
&, the quenched disorder becomes irrelevant and time-
dependent noise dominates the roughening process. This
means that for £ > £ we should recover the results of
either the EW or the KPZ equation with annealed noise
(depending on the absence or the presence of nonlinear
terms). This behavior has been observed both in ex-
periments [7-12] and in simulations of discrete models
[13-15,27-33,39].

The DPD model, discussed in this paper, was intro-
duced in Refs. [13,14] to explain a set of simple imbi-
bition experiments — a somewhat different model, be-
longing to the same universality class, was independently
introduced in Ref. [27]. In these experiments, a colored
suspension (coffee or ink) imbibes a sheet of paper, in the
(1 + 1)-dimensional case, or a porous, spongelike brick,
in the (2 + 1)-dimensional case [13-17]. The experimen-
tally measured roughness exponents are in good agree-
ment with the predictions of the DPD models [13-15,27].
However, a number of experimental features cannot be
explained by this model. For example, in the experi-
ments, the saturation width and the average height of
the pinned interface depend on the rate of evaporation,
which is not taken into account in the DPD model. We
will also discuss a variant of the DPD model that en-
ables us to explain the experimental results in terms of
the effect of evaporation [17].

A self-organized variant of the DPD model has also
been studied [13,43]. In this model the growth proceeds
by avalanches, whose properties are not only of interest
for the study of interface roughening [44-47], but also for
other fields, including biological evolution in ecological
systems [48-51].

The paper is organized as follows. In Sec. II we de-
scribe a set of imbibition experiments, in both 1 + 1 di-
mensions and 2+ 1 dimensions, that allow us to study the
scaling properties of interface roughening in media with
quenched disorder. In Sec. III we discuss the DPD model
and calculate its relevant exponents. We analyze its map-
ping to DP for one-dimensional interfaces (and DSs, for
higher dimensions) and its connection to the universality
class of the KPZ equation with quenched disorder. In
Sec. IV we define avalanches and discuss their scaling
properties and their relation to the self-organized depin-
ning (SOD) model. In Sec. V we describe a set of ex-
periments that probe the “reason” for the pinning of the
interface. We link this pinning to a gradient in the driv-
ing force generated by evaporation and the fluid prop-
erties. We find that the scaling of the interface width
changes with the evaporation rate and is characterized
by an exponent y. We then introduce a variant of the
DPD model that explains the experimental features and
present the results of calculations for this model. Finally,
in Sec. VI we summarize the main results of the paper.

(1.9)
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Some of the results were presented in a preliminary form
in several conference proceedings [13,15,16].

II. IMBIBITION EXPERIMENTS

In this section we describe a set of experiments — orig-
inally proposed in Refs. [13-15] — that allow us to study
the scaling properties of a rough interface moving in a
disordered medium. In these experiments, a colored sus-
pension imbibes an absorbing material, in 1 + 1 dimen-
sions a sheet of paper, and in 2 + 1 dimensions a spongy
brick or a paper roll.

A. The case of 1 + 1 dimensions

In the (1+1)-dimensional experiments, a sheet of paper
with an edge of 20 cm is dipped into a reservoir filled with
a colored suspension: coffee (see Fig. 2). A wet region
starts to grow and a rough interface between dry and wet
regions, the wetting front, propagates in the paper.

Although the experiments are quite simple to describe,
the prediction of the scaling properties of the wetting

(@)

FIG. 2.

(a) Schematic illustration of the experimental
setup. In the 1+1-dimensional experiments we use paper tow-
els as the disordered media and coffee as the invading fluid.
The edge of the paper towels is 20 cm. (b) Photographs of
pinned interfaces in imbibition experiments with coffee and
paper towels for (i) a high evaporation rate gexpt = 0.94go
and (ii) a low evaporation rate gexpt = 0.25go. Here go is the
undetermined multiplicative constant discussed in Sec. V.
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front from first principles is very complex. At microscopic
length scales, paper is an extremely disordered substance,
formed by long fibers that are randomly distributed and
connected. The wetting fluid propagates along the fibers
of the paper due to capillary forces.

The advance of the wetting front depends on many
factors: fluid density (which depends on the evaporation
rate), suspension viscosity and density, gravity, tempera-
ture, size of the holes between fibers, etc. Some of these
factors (evaporation rate, gravity, fluid density) modify
the effective value of the driving force that leads to the
advance of the wetting front. Other factors, such as the
size of the holes between fibers, determine the pinning
force that opposes the growth of the wet region.

Certain regions of the paper can locally pin the ad-
vance of the wet region. If such a region spans the en-
tire system the interface can become globally pinned, so
the advance of the wetting front is stopped [52]. As the
interface departs from the water source, evaporation is
constantly decreasing the fluid density, making it more
and more difficult for the wetting front to advance. Even-
tually, a critical height h. is reached for which the fluid
pressure becomes such that the wetting of the regions
above becomes impossible.

When the interface becomes pinned, we digitize the
rough boundary between wet (colored) and dry (uncol-
ored) areas. In Fig. 3 we plot the local width w (aver-
aged over ten experiments) as a function of the window
of observation ¢ for the digitized experimental interface.
We observe a power-law scaling for nearly 1.5 decades.
The fit to a power law, supported by consecutive slope
analysis, results for the “pinned phase” in

of . =0.63+0.04 (d=1).

exp

(2.1)

We repeated the experiments, but this time not allow-
ing enough time for the interface to get pinned. We then
digitized the interface and plotted w against £ (Fig. 3).
The best fit to a power law results for the “moving phase”
in

ol =073+005 (d=1).

exp

(2.2)
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FIG. 3. Experimental local width w for the pinned and the
moving interfaces in 1 + 1 dimensions. It is visually apparent
that the moving interface has a larger width and a different
roughness exponent than the pinned interface.
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Although the error bars show that the two values could
be identical, the analysis of the DPD model in the next
section suggests that they should be different.

B. The case of 2 + 1 dimensions

We perform two sets of experiments in 2+1 dimensions.
In the first, we used an Oasis brick as the disordered
medium. This brick is made of a spongelike material and
is used by florists to absorb excess water. In the second
set of experiments, we used a paper-towel roll. As the
invading fluid, we tested several suspensions and found
the most appropriate to be Bingo ink because of its high
viscosity and good coloring.

To ensure good absorption of fluid by the spongy brick
or the paper roll, we placed them over small ball bearings.
In both sets of experiments, we added ink gradually and
periodically, in order to maintain a fairly constant level
of ink in the container.

Unfortunately, we could not be sure if the interface
had in fact become pinned everywhere or not, but we
always allowed enough time for the interface to propagate
for several centimeters into the absorbing media. After
the propagation period, we sliced the Oasis brick into
longitudinal sections and digitized the rough interface.
For the paper roll, we selected and digitized several sheets
from different radii (Fig. 4).

We calculated the local width w for 13 slices of the
brick and 9 sheets of paper. In Fig. 5 we show the
average values of the local width for the brick and the
paper roll. We find power-law scaling over roughly one
decade. The best fit results in an exponent

Olexpt = 0.52 £ 0.04 (d=2). (2.3)

When we compare this result with the calculations for
the DPD model in 2 + 1 dimensions, we will see that
within the error bars is consistent with both the results
for the pinned phase or the moving phase. In the (1+1)-

FIG. 4. Digitized ink interface in the (a) Oasis brick and
(b) paper roll using an Apple computer scanner with a reso-
lution of 300 pixels per inch. In (c) we show the full image
from which (b) was magnified. The brick has a section of 7x 7
cm? and the paper roll an exterior radius of 7.5 cm and an
interior radius of 1.75 cm.
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FIG. 5. Scaling of the local width w with £ for the ex-
periments in 2 + 1 dimensions. The curve for the paper roll
results from averaging over 13 different paper sheets and the
one for the Oasis brick results from averaging over 9 different
sections.

dimensional experiments we are able to be certain that
the interface is completely pinned when we digitize it.
On the other hand, in the case of 2 + 1 dimensions the
interface may still be moving when we interrupt the ex-
periments. In fact, in the case of 2 + 1 dimensions, it is
not clear if evaporation can have any role in the pinning
of the interface.

III. THE DPD MODEL

The imbibition experiments described in the preced-
ing section are too complex to be described from first-
principles. For this reason it is convenient to develop a
model that captures the most important features of the
experiments. With this approach we lose the possibil-
ity of exactly predicting the form of the rough interface
between the wet and the dry regions. Instead, we will
be able to explain the scaling properties of the inter-
face. The DPD model was initially introduced in Refs.
[13,14] (and independently in Ref. [27]) with such inten-
tions. The model was studied in more detail in Refs.
(14-17,27].

In this section we will describe the DPD model in 1+1
dimensions; the generalization for higher dimensions is
immediate. We then proceed to discuss its most impor-
tant properties. In Sec. IV we discuss the concept of
avalanches in the DPD model and study their scaling
properties.

A. Description of the model

Let us consider a square lattice of edge L with periodic
boundary conditions along the direction of that edge. To
each cell 7 of the lattice we assign an uncorrelated ran-
dom number, the disorder 7;, with magnitude uniformly
distributed in the interval [0, 1]. The role of 7; is to model
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FIG. 6. Example of the application of the growth rule to a
particular configuration of the interface. White squares refer
to dry unblocked cells, the darker squares refer to dry blocked
cells, and the gray squares refer to wet cells. The tick line
shows the position of the interface. Let us suppose that the
column indicated by the arrow in (a) was chosen for growth.
According to our model, the cells marked 1 will become wet
because they are nearest neighbors to the wet region. After
the wetting, we can see in (b) that the cell marked 2 is below
a wet cell, applying the rule to erode any overhang we wet
that cell. In (c) we show the configuration of the interface
after the growth (thick line).

the random pinning forces generated by the disorder. We
compare the random pinning forces 7; in the lattice with
the driving force F', where 0 < F' < 1. If the pinning
force at a certain cell #; is larger than the driving force,
the cell is labeled “blocked”; otherwise it is labeled “un-
blocked.” Thus a cell is blocked with a probability

p=1-F. (3.1)

Since the model was developed to study imbibition,
we will refer to the growing, invading, region as “wet”
and to the invaded region as “dry.” At time ¢t = 0, we
wet all cells in the bottom row of the lattice. Then we
select a column at random [53] and wet all dry unblocked
cells in that column that are nearest neighbors to a wet
cell. To obtain a single-valued interface, we impose the
auxiliary rule that all dry blocked cells below a wet cell
become wet as well [54] (see Fig. 6). We refer to this
rule as eroston of overhangs. The time unit is defined as
L growth attempts.

We define pinning clusters to be any group of blocked
cells that are connected through nearest- or next-nearest-
neighbor blocked cells. Any pinning cluster whose linear
size £ is smaller than the system size cannot prevent the
advance of the interface. In fact, any pinning cluster
that does not span the system will eventually become
surrounded by the invading fluid, since the invading front
can move around finite “obstacles,” and the erosion of
overhangs rule implies that after being surrounded the
pinning cluster becomes wet.

B. Connection to DP

Figure 7 demonstrates that the advance of the wet re-
gion can only be pinned by a directed path of blocked
cells that spans the lattice. By directed path we mean a
connected path of blocked cells that does not turn back.
Note that if a path turns back, the part of the path turn-



4660

ing back eventually would become surrounded and hence
wet.

Such pinning clusters are branches of a DP cluster, a
fact that enables us to map the scaling properties of the
pinned interface to the scaling properties of DP clusters
[13,14,27]. For a probability of blocked cells smaller than
a critical value p., the DP clusters are finite. An infinite
cluster is present for p > p.. For the DPD model we find

. =~ 0.470, consistent with calculations for DP [55,56].
Near p, the size of DP clusters is characterized by a lon-
gitudinal (parallel) correlation length £, and a transverse
(perpendicular) correlation length £, that when p — p,
diverge as

'fll ~ |pe —p|™"", (3.2)

E_L ~ lpc —pl_uJ"

The parallel and the perpendicular correlation length ex-
ponents for DP clusters have been calculated [57], with
the results

v = 1.733 £0.001, v, = 1.097+0.001 (d=1).

(3.3)

C. Scaling properties

The mapping of the pinned interface to DP enables us
to estimate the static exponents of this problem from the
characteristic exponents of DP clusters. The character-
istic length £ of the pinned regions must be of the order
of £, so we can identify the exponent v to be

vV = 1/||. (3.4)

The global width W,; of the pinned interface should

scale as £, since its advance is blocked by a DP path.
On the other hand, £ must be larger than the system

ﬁ;l [ [ ]

- L

—

FIG. 7. General conditions for the pinning of the interface.
We see in the figure that the path of blocked cells pinning
the interface is connected as a DP path, with five possible
directions (north, northeast, east, southeast, and south). The
shadowing convention for the cells is the same as in Fig. 6.
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size L for the interface to become pinned, from which
follows [13,14,27]

Waae ~ £~ €7/ ~n D210 (g2 L), (3.5)
Comparing with (1.3), we conclude that the roughness
exponent is given in terms of the correlation exponents

for DP,

a = V_j_/l/”. (36)
Substituting (3.3) into (3.6), we predict
a=0633+£0001 (d=1), (3.7)

in good agreement with the experiments and the simu-
lations. For the case | <« L, we obtain the KPZ re-
sult with annealed disorder for length scales £ such that
§ <L L.

If p > p., the interface becomes pinned after some fi-
nite time. However, for p < p., the DPD model gives rise
to an interface that propagates with a constant nonzero
velocity. In Sec. I we discussed how near the depinning
transition the velocity of the interface scales as a power
law. To determine the velocity exponent let us consider
the following argument. Near the depinning transition
most of the interface is pinned, except for a few regions.
The growth occurs by the lateral propagation of the grow-
ing regions through the system. The characteristic time
required for this propagation is of the order of t«. Dur-
ing this process the interface advances from one blocking
path to the next; the distance advanced is typically of
the order of £, ~ Wia. Using (1.3), (1.4b), (1.7), and
(3.2) we obtain

v~ € Jtx ~ é‘ﬁ"/gﬁ ~ l‘(l‘z ~ fvnte=z) (3.8)
Upon comparison with (1.6), we conclude that
6 = z/”(z - a). (39)

This relation can also be derived in a different way
[40,41].

Reference [37] showed that for the DPD model, the
coefficient A of the nonlinear term of Eq. (1.8) diverges
at the depinning transition

A~ f79. (3.10)

The new exponent ¢ can be linked to the other critical

exponents that characterize the depinning transition [38]

d=y(2—-a-2z). (3.11)

This prediction is in good agreement with the calcula-
tions of Ref. [37] for d < 2.

The mapping to DP is not unique to the DPD model,
but is a general feature of a large class of models
[16,27,31,38]. In 1+ 1 dimensions the agreement between
the estimates of the exponents from the mapping to DP
and the numerical simulations is quite good.

An interesting problem, still unsolved, is the situa-
tion for the moving interface. Measurements of the local
width w as a function of the window of observation £ lead
to an effective exponent o™ ~ 0.72 [15,27]. However, it
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is possible that the interface in the moving regime might
not be self-affine [27].

D. Higher dimensions

In higher dimensions, the mapping to DP is no longer
possible since the DP clusters have many holes making
it impossible for them to pin the interface. In this case
the interface can only be pinned by a DS that is a d-
dimensional simply connected hypersurface embedded in
a (d + 1)-dimensional space. The DSs are self-affine and
are “directed” in the sense that they do not have over-
hangs. In 1 + 1 dimensions, the DS reduces to DP.

DSs are a new problem about which little is known.
Near the critical probability, i.e., the probability for
which their size diverges, they can be characterized by
two correlation lengths that scale as (3.2). All the rela-
tions derived in Sec. IIIC for the scaling properties of
the interface are still valid for higher dimensions, but v
and v, are now the correlation length exponents for DSs.

We thoroughly studied the DPD models for dimensions
up to 6 + 1. The results for most of the exponents of
interface roughening in disordered media are presented
in Table I (see also Fig. 8).

For the case of 2 + 1 dimensions, we also calculated
the roughness exponent for the moving interface and ob-
tained

o™ =052+003 (d=2), (3.12)

in good agreement with the value (2.3) obtained in the
experiments.

E. The dynamical exponent 2

In the previous subsections we derived scaling relations
linking the exponents characterizing the static properties
of rough interfaces in the presence of quenched disorder
using the mapping of the pinned interface to DP (d = 1)
or DSs (d > 1). However, the dynamics of the roughening
was not derived, leaving us with an unknown exponent
z. In this subsection we determine z from the study of
how a perturbation, caused by a single unblocked cell,
propagates over the interface [58].

To study the propagation of correlations in the system

04 —‘— 4
- ,l, _‘
0.2 + - < B
0.0 1 1 1 1
0 1 2 3 4 5 6 7
d

FIG. 8. Values of the exponents a and 3, for the DPD
model for dimensions up to 6 + 1. The results plotted suggest
that this class of models has no critical dimension.

it is better to change the initial conditions in the model
and to make the invasion of the cells’ nearest neighbors
to the wet region in parallel (Fig. 9). If we start the sim-
ulation at time ¢ = 0 with a single unblocked cell in front
of the interface we can follow the propagation of corre-
lations simply by monitoring the longitudinal dimension
of the invaded region. At each time step, a certain set
of cells becomes invaded. In analogy to invasion perco-
lation, we call this set of cells the percolation shell We
refer to the longitudinal and the perpendicular compo-
nents of the average radius of gyration of the percolation
shell by 7 and 7, , respectively. From (1.5b) we see that
t~rj. (3.13)
For the case d = 1, all shells are confined between the
old directed path that spans the system at ¢ = 0 and a
new pinning path that will block the growth after some
time. The region between these two paths is effectively
one dimensional, since the vertical distance between them
scales as {1, and v, < v) implies &, /§ = 0 as f — 0.
For any cell on the interface that becomes wet at time
t, we can find the cell from which it was invaded at the
previous time step and recreate the sequence of invasion

TABLE I. Critical exponents of the DPD model for dimensions up to 6 + 1 as measured directly

from the simulations.

Dimensions
Exponents 1+1 2+1 3+1 4+1 5+1 6+ 1

Y 1.73 £ 0.02 1.16 + 0.05 0.95 £ 0.1 0.66 £+ 0.10 0.6 + 0.1 0.54+0.1
o 0.63 £+ 0.01 0.48 £ 0.03 0.38 4 0.04 0.27 £ 0.05 0.25 £+ 0.05 0.2 4+0.2
z 1.01 £ 0.02 1.15 4+ 0.05 1.36 £+ 0.05 1.58 +£0.05 1.7+0.1 1.8+ 0.2
Vi 1.10 + 0.02 0.57 £+ 0.05 0.34 £ 0.05 0.2+0.1 0.15 4+ 0.05 0.1 +0.1
B 0.63 £+ 0.01 0.41 £+ 0.05 0.29 £ 0.07 0.2+0.1 0.1+0.1 0.1 +£0.1
P 0.33 +£0.04 0.59 + 0.07 0.74 + 0.09 1.00 £ 0.09

[ 0.58 £+ 0.07 0.8 +0.2 1.0 £ 0.2 1.0 £ 0.2
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events that leads from the initial cell to any given cell on
the interface (Fig. 10). The trajectory of this sequence
follows the upper pinning path and is effectively one di-
mensional. Its length £ scales as its average end-to-end
distance 7. On the other hand, £ is equal to the time
t needed to reach the end of the path. Hence t ~ r
and from (3.13) we conclude that z = 1. This result is
supported by our simulations (Table II).

For the case d > 1, we must consider the region
bounded by two self-affine DSs. This region is effectively
d dimensional since £, /£ — 0. Hence the shortest path
leading from the initial point to any point of this region is

(@) ' (b)

FIG. 9. (a) Initial conditions in the DPD model for the
growth of single avalanches: all sites in the bottom edge ex-
cept one are blocked. The color convention for the cells is
the same as in Fig. 6. (b) The wet region after some time;
the quantity n(t) defined in the text counts the number of
unblocked cells in the interface, in this case 8. (c) Horizontal
projection of an avalanche in 2+ 1 dimensions for p ~ p.. The
avalanche was started at the center of the figure and is shown
at time 2'°. The current diameter of the cluster is approxi-
mately 2'°. The uniform gray area shows the region left dry
since the beginning of the process. The darkest shade of gray
corresponds to the largest heights of the interface. The black
dots, forming a “fractal dust,” indicate the unblocked cells at
the interface.
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(a)

FIG. 10. Illustration of the dynamics of the DPD model for
1 + 1 dimensions. (a) Schematic representation of a region
defined by two pinning paths. The heavy circle indicates the
origin for the invasion, the thin arcs represent the positions
of the invading front at successive times, and the dashed line
represents schematically the path for the invasion. (b) Simu-
lation results for invasion after 2'° time steps starting from
a single cell near the center. We show the invaded region at a
sequence of times that are multiples of 128. Regions invaded
at later times are displayed in darker shades of gray. The
path from the origin to the latest invaded point is shown in
black. Although this path displays some fluctuations in the
vertical direction, they can be disregarded since v > v, so
as p — pe, £1 /€ — 0. Thus the distance propagated by the
invading front is proportional to time. Since tx ~ £, we can
conclude that z = djn = 1.

effectively confined to a d-dimensional hyperplane (Fig.
11). This shortest path has to avoid blocked cells in this
hyperplane, as does the shortest path of isotropic per-
colation. For isotropic percolation it is known that the
length of the shortest path £ scales with the Euclidean
end-to-end distance 7 as £ ~ rdmin [55]. The similarity
between the geometrical properties of the paths in DPD
and isotropic percolation leads us to propose

z = dpin. (3.14)

We are arguing that the invading front moves on a d-
dimensional isotropic percolation cluster (see Figs. 10
and 11). The critical threshold is smaller for DPD than
in the case of the usual isotropic percolation since (i)
some of the blocked cells are eroded and (ii) our sys-
temis a d-dimensional slab. The critical threshold can be
determined by the spanning of the invading front in the
d-dimensional slab. We confirm that we are at the critical
threshold by numerically studying the survival probabil-
ity of these clusters, as described in [15,16], and verify
that we reach the threshold where the invading cluster
spans the system.

To test the argument leading to (3.14), we perform
simulations for both DPD and percolation for d = 1-6.
We present our results for both z and dp,;, in Table II
(see also Fig. 12) [59].
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(a)

&

FIG. 11. Illustration of the dynamics of the DPD model
for 2 + 1 dimensions. (a) Schematic representation of the
zy projection of the region defined by two pinning self-affine
DSs. The heavy circle indicates the origin for the invasion, the
thin arcs represent the zy projections of the invading front at
successive times, and the dashed line represents schematically
the path for the invasion. (b) Simulation results for invasion
after 2'° time steps starting from a single cell located to the
left of the center. We show the zy projection of the invaded
region at a sequence of times that are multiples of 128. Re-
gions invaded at later times are displayed in darker shades
of gray. It is visually apparent that it takes a long time to
invade some regions close to the origin because the path to
that position (shown in black) appears to be a fractal curve of
dimension greater than one. The fluctuations in the vertical
direction can be disregarded since we know that £, /€ — O.
We find that the path can be identified with the shortest path
(the “chemical distance”) of isotropic percolation and that its
length scales with the linear distance r to the point as rdmin,
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FIG. 12. (a) Scaling with time of the horizontal length of
a DPD cluster in d + 1 dimensions grown from a single cell.
Shown is a plot of time ¢t as a function of r|, which is the
average of the parallel components of the radius of gyration
of the shell. The asymptotic slope is z. (b) Consecutive slopes
analysis of the data displayed in (a). Note that, after some
transient behavior, a transition to a power-law scaling occurs.
For higher dimensions, the power-law scaling is affected by
finite-size effects for larger times.

It is well known that for isotropic percolation the upper
critical dimension is d. = 6, i.e., for d > d. the mean
field result dmin = 2 becomes exact [55]. This suggests
an upper critical dimension d. 4+ 1 = 7 for the dynamics
of the DPD models, which are in the universality class of
Eq. (1.8), and that z=2ford+1> 7.

Since the dynamics of Eq. (1.8) and the models in the
DPD universality class are connected to isotropic perco-
lation, while the static properties are mapped to DP or
DSs, it is possible that the upper critical dimension deter-
mined in this study may be valid only for the dynamics.
It is also possible that d. for the static properties may not
exist, on the basis of the following argument. When, e.g.,
a one-dimensional object is embedded in a d-dimensional
space, we expect that as we increase d, the interactions
between the different parts of the object decrease. At a
certain d = d,, these interactions can be neglected and
the exponents become those of the ideal noninteracting
case. In contrast, when the dimension of the object is
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TABLE II. Dynamical exponent z for the DPD model in d + 1 dimensions and the shortest path
exponent dmin for .isotropic percolation for a d-dimensional cubic lattice of L* sites. The values
indicated by an asterisk are exact, while the remaining values were calculated in our simulations by
studying the consecutive slopes of the linear regime in Fig. 12. At the critical dimension d. = 6, one
should not expect to find the exact result dmin = 2 because logarithmic corrections are generally
present. The system sizes used in the simulations range from L = 4096 for d = 2 to L = 16 for
d = 6. Each result is averaged over 10°-107 realizations of the disorder.

DPD Percolation
d DPec z DPec dmin
1 0.4698 + 0.0005 1.01 +0.02 1* 1
2 0.7425 + 0.0005 1.15 + 0.05 0.5927 4+ 0.0005 1.13 +0.03
3 0.8425 + 0.0005 1.36 + 0.05 0.3116 + 0.0005 1.38 + 0.02
4 0.8895 + 0.0005 1.58 + 0.05 0.197 £+ 0.005 1.53 £ 0.05
5 0.9175 + 0.0005 1.7 +0.1 0.141 + 0.005 1.7+ 0.1
6 0.931 + 0.005 1.8 +0.2 0.107 + 0.005 1.8+ 0.2

not fixed but increases with d, as in the case of DSs in
which the object is one dimension smaller than the space,
we expect to move away from the noninteracting limit.
In fact, the analytical solution of the DPD model in the
Cayley tree suggests that the upper critical dimension for
the statics might be oo [16].

Thus we see that the DPD model has three independent
exponents v, o and z. The static exponents, v and «, can
be evaluated from the exponents of DP (d = 1) or DSs
(d > 1). On the other hand, the dynamics of the model is
related to isotropic percolation in d dimensions. We find
that z is equal to the exponent d;, characterizing the
scaling of the shortest path in isotropic percolation. The
model also allows us to calculate the roughness exponents
determined in the experiments for both the pinned and
the moving interfaces. However, at this time, no explana-
tion is available for why « changes value at the transition
or for the value of a™.

IV. THE AVALANCHE MECHANISM OF
INTERFACE MOTION

The study of the scaling properties of self-organized
systems is of great importance for many fields [44-51]. In
this section we show how avalanches can be generated in
the DPD model and we study their properties. We then
relate those avalanches to the SOD variant and discuss
some of the results that have been obtained recently for
the SOD model and compare them with our numerical
results.

A. Avalanches in the DPD model

As we discussed above, for p > p. the growth of the
interface for the DPD model is stopped by the spanning
path of a DP cluster in 1+1 dimensions or a spanning self-
affine DS in (d + 1) dimensions. Even when the growth
is completely stopped, the blocked cells on the interface
may still erode, but at an infinitesimal rate. With this as-
sumption, we can remove a blocked cell at random when
the interface is completely stopped, thereby producing
an avalanche that eventually will die out when the front
reaches a second pinning hypersurface (Fig. 13).

An alternative way of producing avalanches is to start
the growth from a single wet cell in a row of blocked cells
at time ¢t = 0 (Fig. 9). For p > p., the growing clusters

will eventually become pinned by a blocking path. Be-
low p. most clusters will grow indefinitely, although some
might become pinned by the blocking surfaces.

In analogy with conventional percolation, the survival
probability Ps,uv(t) of the clusters will decay as a power
law [60]

Psurv(t) ~ t T Tsurv (t < t><)a (41)

where t, ~ {ﬁ In Fig. 14 we show the scaling of Py, (t)
for 2 4 1 dimensions, and the value of 74, is given in
Table III.

If p > pe, Psurv(t > tx) approaches zero exponentially.
If p < pey, Psurv(t > tx) approaches a constant value
Pyyrv(00), the probability of an infinite cluster. Thus
studying Psyuyv(t) provides a very accurate method of es-
timating p.. We calculated P,y (t) and determined both
the exponent Tyyv and p. for d = 1 - 6 (Table III). Using
these high-accuracy determinations of the critical prob-
ability p. we were able to measure with higher precision
the other critical exponents (Appendix A and Tables I
and III).

The probability distribution of avalanches of “volume”
S, Pavai(s), is calculated as the ratio of the number of
avalanches of volume s to the total number of avalanches.
We find [15]

Paval(s) ~ g7 Tavel f3(S/S()), (42)

where s is the number of cells invaded during an
avalanche, sqg ~ &, El‘f is the characteristic volume of
an avalanche, and fs3(u) is a scaling function that ap-
proaches a constant for u <« 1 and decays exponentially
for u > 1 (Fig. 15).

The exponents 7Tyuv and T,va1 can be related as

dta t(d+a)/z'

s~rd Tltli ~ Ty (4.3)

On the other hand, Payvai(s)ds = Payrv(t)dt. Hence from
(4.1) and (4.3) follows

tTem(dte)/z y(dte)/z-1 gp — = Teurv g, (4.4)
From (4.4), we find
surv 1
Taval = 1 + M (45)

d+ a
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FIG. 13. Successive series of pinned interfaces for the DP
model with L = 400 and p = 0.5 > p.. We show the bound-
aries of avalanches, produced by removing a randomly chosen
blocked cell from the previously pinned interface. The corre-
lation lengths £ and £, displayed describe the typical size of
the avalanches.

If p = p., the dynamical critical exponents 3 and z can
be obtained from the dependence of the avalanche volume
s on time. We can define a new exponent é that charac-
terizes the time dependence of the number of unblocked
cells in the interface, i.e., the size of the percolation shell

(Fig. 9)
n(t) ~ t°. (4.6)

To relate the new exponent § to z and «, we start by
noticing that the size of the invaded region scales as

N mi +1
N /0 n(t)dt ~ 77O, (4.7)
From (4.7), we obtain
=3t 4 (4.8)
4

In 1 + 1 dimensions, z = 1, so § = a = (3, which agrees
with the simple geometrical picture that the projection
of the growing region scales as the length of the steepest
moving terrace, which scales as the width of the whole
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FIG. 14. Distribution of survival times for avalanches
Pourv(t) for 2 + 1 dimensions. The system size is 2048 and
10® avalanches were produced for each probability. In (a) we
show data for several probabilities close to the critical value.
The straight part of the distribution can be well fitted to a
power law with exponent 2.18. In (b) we show the consecutive
slopes of the data in (a). The figure makes clear that we can
predict with great precision the value of p. and the error of
the estimate.

system W(t) ~ t?. In 1 + 1 dimensions, we find § =
0.60 £ 0.03, in agreement with the above relations.

The projection of the shell of unblocked cells in the
interface forms a fractal dust (Fig. 9). The fractal di-
mension of this dust dgqust can be related to Teurv [16].
The fractal dimension of the dust must be the same as
the fractal dimension of the “bubbles” surrounding the
regions of space confined by two DSs. The distribution of

TABLE III. Critical exponents for the avalanches in the DPD model for dimensions up to 6 +1
as measured directly from the simulations. For comparison we also show the estimates obtained

with (4.17) and (4.18).

Dimensions
Exponents 1+1 2+1 3+1 4+1 541 6+1

p 1.98 £ 0.03 1.41 + 0.05 0.95 £ 0.05 0.8+0.2 0.5+0.2 0.3+£0.2
) 0.60 + 0.03 1.14 & 0.06 1.6 £ 0.1 1.9+ 0.2 2.140.2 2.5+0.3
Tourv 1.46 + 0.02 2.18 + 0.03 2.54 + 0.05 3.0+0.2
Taval 1.26 + 0.02 1.51 & 0.07 1.70 £ 0.05 1.7+0.1 1.84+0.1 1.9+0.1
MB 1.3+0.1 1.5 +0.1 1.6 +£0.2 1.6 + 0.2 1.6 £0.1 1.6 +£0.1
QP 1.2+0.1 1.2+0.1 1.2+0.1 1.2+0.1 1.1+0.1 1.1+0.1
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FIG. 15. Distribution of avalanches size Paya1 for 2 + 1 di-
mensions. The system size is 2048 and 10® avalanches were
produced for each probability. In (a) we show the data for the
critical probability; a good power-law fit can be done with an
exponent 1.51. (b) shows a data collapse, according to (4.2),
for several distinct probabilities close to p..

these confined regions can be linked to the distribution
of survival times for the avalanches. Thus we have

Pa,,al(r”) d?‘n = Paourv(t) dt (4.9a)
and
’I'[T” d’l'” = ¢ Tsurv dt, (49b)
Since t ~ rﬁ, it follows that
T” —-1= Z(Tsurv - 1) (4.10)

On the other hand, it is well known that the fractal di-
mension of some dust separated by regions whose size

follows a power-law distribution Payai(r)) ~ TH'T“ is given
by
daust = 7 — 1, (4.11)
leading to
daust = 2(Tourv — 1). (4.12)
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Since dgust < 4, the fractal dust is packed in “moving
blocks.” These moving blocks behave like quasiparticles,
which are distributed in a fractal way with dimension
dgust- This description is supported by numerical studies
of the correlation function of the dust.

We can also relate the velocity of the interface to the
number of unblocked cells in the interface, as defined in
(4.6). The velocity at each instant can be obtained as
the number of unblocked cells divided by the size of the
parallel projection of the invaded region

v~ n(t)/Ef ~ 0 fEf ~ €507~ fT D (413)
Comparing with (1.6), we obtain
6= I/” (d - 25) (4.14)

As a consistency check, we note that (4.14) can also be
obtained by equating (4.8) with (3.9).

We measured the components of the radius of gyration
of the avalanches in the longitudinal and transverse di-
rections for both 1+1 and 2+1 dimensions (Fig. 16). For
1+1 dimensions we find, for a system of size L = 131 072,

vl = 1.7340.02, v =1104£0.02 (d=1),

(4.15)

in good agreement with the correlation length exponents
of DP given in Eq. (3.3).

For the case of 2+1 dimensions, we find the correlation
length exponents to be

vlzlaval =1.16 + 0.05, v3vel = 0.57 £ 0.05 (d=2),

(4.16)
for a system of linear size L = 2048. The estimates (4.16)
predict, from (3.6), that & = 0.49 £ 0.1, in good agree-

ment with the value obtained from the analysis of the
scaling of the width (see Table I).
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FIG. 16. Scaling of the average size s and parallel and per-
pendicular correlation lengths of the avalanches for 2 + 1 di-
mensions. These quantities were calculated according to the
method described in Appendix A. Good power-law fitting was
found with the exponents given in (4.16).
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B. Avalanches in the SOD model

A variant of the model discussed so far, in which the
growth is made in an invasion percolation fashion, was
introduced in Ref. [13]. Subsequently, a similar model
was introduced in Ref. [43] and studied in detail in Refs.
[44-47]). The SOD model can still be mapped to DP. In
fact, the SOD model is always at the depinning transi-
tion.

For the SOD model, the cells are not labeled blocked
or unblocked. Instead, we keep in memory the pinning
forces at each cell. The growth proceeds by the invasion
(wetting) of the cell that is a nearest neighbor to the wet
region and has the weakest noise, i.e., with the smallest
random number 7. Then we erode any overhangs that
might have been formed, i.e., we wet any dry cell below
a wet cell. The unit time is defined as the volume of the
invaded region, i.e., it takes one time unit to invade one
cell.

With the time defined in this way, many authors
[13,43-47] then define a dynamical exponent zgop. By a
simple argument, we can relate zsop with the dynamical
exponent z, discussed in Sec. III for the DPD model. In
the SOD model the time is defined as

t t
tSODN/ n(t’)dt’~/ t'odt’ ~ 5+,
0 0

Here, n(t) is the number of unblocked active cells as de-
fined in Eq. (4.6). Using Eq. (4.8), we obtain the relation

230D = 2(5 + 1),

in good agreement with the numerical value zsop ~ 1.63
found in [45].

At any given instant ¢, the interface is characterized
by a set of noises {n}. The smallest of these, denoted
Tmin(t), is useful in characterizing the state of the system
at that instant. Reference [45] argued that every possible
configuration of the interface corresponds to a path on a
cluster of sites with values of the noise greater than or
equal to 7ymin. This fact and the mapping to DP imply
that 7min(t) cannot exceed g. = 1 — p. since that would
imply the existence of a directed path of blocked cells
spanning the system for a probability smaller than p..

The general tendency is for 7min(t) to increase, until
it reaches g., but its growth is not monotonic (Fig. 17).
When we start the growth from a flat interface the noise
has a uniform distribution between 0 and 1. This implies
that 7min(1) will be very close to zero. The interface will
then advance to a new position and the noise 7min(1) will
be replaced by a new noise. Since 7min(1) is very small
then it is very likely than the new noise will be larger
than nNmin(1). So we see that Mmin(2) > 7min(1) with high
probability.

Initially, Mmin(t) will grow monotonically. However,
at some time t¢ all cells in the interface with small
noise will have been eroded, so the probability that
Nmin(to+1) < 7min(to) Will no longer be irrelevant. Hence
Tmin(t) can decrease. During some time interval At,
Tmin (t) Will be smaller than 7min(to), which can only oc-
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FIG. 17. Evolution with time of 7min. Every local maxi-
mum defines the end of an avalanche and the beginning of
another. Regions with monotonic growth indicate that the
avalanches have size 1. After the transient period, the critical
state is reached and the maxima become equal to gc = 1 —p..

cur in a connected region since all other cells in the inter-
face have larger noise values. Therefore we can identify
the avalanches with the regions invaded during the time
interval from to to (to + At) [47].

A different regime is reached when 7min(t) reaches the
value gq., for an infinite system (for a finite system there
will be fluctuations around this value). Then the inter-
face is just at a DP path that spans the system. This
implies that for some time steps the advance will be ac-
complished by invading cells with 7y, < gc, until a new
DP path is found, for which 7y, is again equal to g..

The early stage in which 7ny;, is smaller than g¢. is
referred to as the transient regime; after it ends, the sys-
tem is said to be in the critical state. From then on,
the interface will advance between spanning paths of the
DP cluster. So we see that the avalanche picture for the
SOD model is similar, after the transient regime, to the
avalanche image of the DPD model in which we unblock a
site at random. This argument is supported by numerical
results [15,16,44-47].

The problem with the previous definition of avalanches
is that it is precise only for the critical state. To remedy
this situation, Ref. [47] introduced a modified definition,
in which avalanches for ¢ < ¢. are finished whenever nyin
passes the threshold gq.

A different method to define avalanches for ¢ < ¢. was
proposed in Refs. [15,16], whereby the growth is allowed
only until the first time the system has 7min = ¢. In
spite of the different definitions and initial conditions,
numerical calculations reveal that both approaches lead
to identical exponents, at least for d < 2.

Theoretical predictions for the avalanche size distribu-
tion were made in Refs. [44-47]. We extend an argument
proposed by Olami-Procaccia-Zeitak (OPZ) for 1+ 1 di-
mensions [46], to higher dimensions, obtaining

yopz _ d+1
aval d+a

On the other hand, Maslov and Paczuski (MP) [47] pre-
dict

(4.17)
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d— 1/1/“

MP __
T 1 it a

aval —

(4.18)

Our simulations enable us to test the accuracy of both
of these formulas (Table III). The OPZ relation (4.17)
cannot be correct for all d: For d = 1, 'rgl:lz is slightly
below numerical results, but for d > 1, (4.17) decreases
while T,yva1 increases. On the other hand, the MP re-
lation (4.18) predicts values consistent with our simu-
lations. Moreover, recent work on the Cayley tree [61]
suggests that the upper critical dimensions for this class
of models should be d. = co and that Tavai(d = 00) = 2,
again in good agreement with (4.18). Those calculations
also lead to the estimates o = 0, 8 = 0, v, = 0, and
I/” =1 / 4.

However, from the MP relation (4.18), we can derive
(see Appendix A)

WP =1+, (4.19)
where «, is the percolation exponent characterizing the
divergence of the average volume of the clusters at the
transition. In Table III we show the values obtained for
vp in our simulations. We can see that several values are
smaller than one, while (4.19) predicts v, > 1 for all d.

A limitation of the SOD model is that the velocity of
the interface is constant, thereby making the “temporal”
definition of avalanches ambiguous, since our “physical
sense” of an avalanche is the very fast invasion of a certain
region while here everything happens at constant velocity
[62]. To avoid this “paradox,” a different time unit can
be defined in which the time required to invade a cell
would depend exponentially on the value of 7yi,. We
define this dependence as

£~ exp (’im_n) ,
o

where 79 is some constant much smaller than 1.

(4.20)

V. THE GRADIENT DPD MODEL

The DPD model can predict the roughness exponent
obtained in the experiments, but several other experi-
mental findings are not explained. One problem is how
to explain that in the experiments the driving force, at
some stage, takes its critical value, allowing the inter-
face to become pinned. Also, the effect of evaporation on
both the saturation width W,; and the average height A,
of the pinned interface cannot be explained by the DPD
model. In order to try to quantify these ideas, we pro-
pose and study in this section an extension to the DPD
model that takes into account these effects.

A. Motivation and definition

We anticipate, on physical grounds, that the smaller
the evaporation rate [64], the larger the critical height.
To test this hypothesis we repeated our imbibition ex-
periments in different conditions of evaporation. We find
that as we decreased the evaporation rate, the height

reached by the interface indeed increased (Fig. 2).

The basic idea is that the driving force is no longer a
constant, but rather it depends on the height, so F =
F(h). This implies that the density of blocked cells will
also be a function of the height, so p = p(h).

In 1 + 1 dimensions, we model the pinning obstacles
by randomly “blocking,” in a lattice of horizontal size L,
a fraction p(h) of the cells in each horizontal row, where
h is the height from the bottom of the lattice and p(h)
is a monotonically increasing function of h. The original
DPD model corresponds to the case p(h) =const.

This extension of the model can be justified on physical
grounds. In fact, we know that the actual disorder in
the paper is not height dependent; however, its effect in
pinning the propagation of the fluid is tncreasing with
hetght, due to the decrease in the fluid pressure. The
most physical assumption is an exponential decrease of
the fluid pressure or, equivalently, of the driving force.
This will lead to an “effective” increase in the density of
pinning obstacles [65] as we depart from the reservoir.
Hence

p(h) —po x 1 — e~ h/ho, (5.1)
If h < ho (and p. — po < p.), we can write
p(h) — po hy'h « gh. (5.2)

Hence, in this limit, we find a constant nonzero gradient
g in the density of pinning obstacles.

The gradient in our model is intended to reproduce
the combined effect on the driving force of all the factors
referred to in Sec. IV: decrease of fluid density because
of evaporation, changes in the density of the suspension,
etc.

B. Simulations

The presence of the gradient g changes the width of
the pinned interface and its scaling form. Our simula-
tions show that for observation scales £ much smaller
than some characteristic crossover length £, , the satu-
rated width behaves as w ~ £, but for £ > ¢/, the
width saturates at a value Wy, that depends upon the
gradient as

Weat ~ g7 (Z > Z,x) (53)
This behavior can be expressed by a scaling law of the
form

w(f,g) ~ £ f4(e/£l><)1 (5'43)

where
O o~g/e (5.4b)

The scaling function fs(u) satisfies fa(u < 1) ~const
and fi(u > 1) ~ v~*. Our simulations for a system of
size L = 16 384 yield the exponents

Cgim = 0.63 £ 0.02, ~gim = 0.52£0.02  (d=1).

(5.5)
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We stress that the validity of the scaling law (5.4b) and
the values of the exponents do not depend on the exact
form of p(h), but only on the value of Vp(k) at h. [66].

The exponent v can be related to v;. A point of the
interface, at a distance W, away from the critical height,
is pinned by a DP path if the transverse size of that
cluster is of order £, (p). At that point we have p =
P(he £ Wsat) = pe & gWias. Therefore, using Eq. (3.2)
we find [66—-69]

Weat ~ €L(p) ~ |Pe — (Pe £ gWeat)| ™+ (5.6)
and
Wsat ~ IgWsatr—VJ-' (57)
From (5.3) and (5.7) follows
y=vi/(14+vy). (5.8)
Since v, is known accurately, Eq. (5.8) predicts
v = 0.523 £ 0.001 (d=1), (5.9)
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FIG. 18. Simulation results for the width w(¢,g) of the
pinned interface in 2 + 1 dimensions, where g is the gradient
in the density of blocked cells. (a) The widths for several
values of the gradient (averaged over 128 runs for each value
of the gradient). (b) The same simulation results, plotted in
the scaling form of Eq. (5.4), using the values of the exponents
from (5.10).
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in good agreement with our simulation result (5.5).

The generalization of the model, with the gradient, to
2 4+ 1 dimensions is straightforward. We simulated the
model for a 512 x 512 system; the critical exponents that
give the best data collapse are (see Fig. 18)

agim = 0.43 + 0.04,

Ysim = 0.32 £ 0.02 (d=2).

(5.10)

From these results, we calculate the exponents charac-
terizing the parallel and the perpendicular correlation
lengths for the DS problem in 2+ 1 dimensions, obtaining

vy =11%+01, v, =047£0.04 (d=2). (5.11)
These results are in reasonable agreement with calcu-
lations of the exponents from the scaling properties of
avalanches (see Sec. IV).
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FIG. 19. Experimental results for the width w(¢, g) of the
pinned interface. (a) The widths for several values of the
gradient g (in units of go). The values of g were calculated
as described in the text; the error in these values is smaller
than 10%. The widths were corrected by a multiplicative
factor to make them coincide for the smallest £. (b) The
same experimental results, plotted in the scaling form of Eq.
(5.4), using the values of the exponents from (5.13).
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TABLE IV. Critical exponents of the gradient DPD model.

Dimensions
Exponents 1+1 2+1
«a 0.63 £ 0.02 0.43 +0.04
107 0.52 4 0.02 0.32 £+ 0.02
vy 1.09 + 0.08 0.47 £0.04
Y 1.7+ 0.1 1.1 +£0.1

C. Experiments

Without the gradient, the interface has critical behav-
ior only if we tune po to p.. However, with the gradi-
ent the interface always stops at the critical height h..
This critical height can be calculated from the condition
p(he) = pe. From (5.2) we obtain

he ~g7 1, (5.12)

i.e., the height reached by the wetting fluid is inversely
proportional to the gradient in the disorder.

The experimental data presented in Fig. 19 remark-
ably resemble the data obtained from the model. How-
ever, without knowing the actual value of the gradient
in the experiments, it is not possible to check the valid-
ity of the scaling law (5.4b) experimentally. Nonetheless,
measuring the critical height in the experiments and us-
ing Eq. (5.12), we are able to estimate g, the gradient
in the “effective disorder,” for the experiments, up to a
multiplicative constant go. Using these experimentally
determined values of g, we rescale the results obtained
for the width according to the scaling law (5.4b). In Fig.
19 we show this rescaling, where we used

Otexpt = 0.65 £ 0.05, Yexpt = 0.49£0.05  (d =1).

(5.13)

The experimental values of both exponents agree well
with the results obtained from the simulations (Table IV)
and with the theoretical predictions based in the known
results from DP.

In summary, in this section we discussed a variant of
the DPD model that incorporates evaporation by intro-
ducing a gradient in the density of pinning cells [65]. The
model provides insight into three previously unexplained
aspects of imbibition experiments.

(i) The interface always stops growing after some fi-
nite time. Due to the gradient, the wetting interface
only moves until it reaches a critical density of pinning
cells. This gradient in pinning cells arises from the bal-
ance between the evaporation of the fluid and the surface
tension, on the one hand, and the capillary forces tending
to move it along the paper, on the other.

(ii) The final height of the interface h. increases when
the evaporation is reduced, due to the smaller effective
gradient in the pinning disorder.

(iii) An exponent v was found characterizing the de-
pendence on the gradient of the saturation width and
the characteristic length £ . Good agreement was found
between experimental, theoretical, and numerical calcu-
lations of the exponents.

L. A.N. AMARAL et al. S1

VI. SUMMARY

In this work we introduced and discussed a set of im-
bibition experiments that probe the behavior of rough
interfaces in disordered media. We developed a discrete
model, the DPD model, and showed that it correctly pre-
dicts the experimental results.

We presented a discussion of the properties of the DPD
model, which has been shown in Ref. [37] to be in the
same universality class as a continuum differential equa-
tion of the KPZ type with quenched disorder. We showed
that the model has only three independent exponents —
v, a, and z — from which all others can be derived
through scaling laws. The mapping to DP enables us to
obtain v and « from the exponents of DP (d = 1) or DSs
(d > 1). On the other hand, a mapping of the dynamics
of the DPD model to isotropic percolation allow us to
determine z.

We introduced avalanches in the DPD model and
studied their scaling properties. We then related the
avalanches in the DPD model to the avalanches in the
SOD variant of the DPD model. We derived scaling laws
relating the critical exponents for the avalanches 7T,y and
Tsurv tO the other critical exponents of the DPD model,
confirming that they are not independent.

Finally, we performed a set of imbibition experiments
to study the effect of evaporation on interfacial phenom-
ena. We modify the DPD model to take these effects
into consideration and use the present model to predict
the experimental results. Again the mapping to DP en-
ables us to estimate the values of the exponents. Good
agreement was obtained between experimental, theoreti-
cal, and numerical calculations.
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APPENDIX A: CALCULATING THE
CORRELATION LENGTH EXPONENTS

In this appendix we discuss the relation between perco-
lation and the growth of clusters by avalanches and use
the insight gained to determine the exponents charac-
terizing the divergence of the parallel and perpendicular
correlation lengths. As discussed above, the characteris-
tic volume of the avalanches diverges when p — p,,

So ~ (pc - p)_1/07 (Al)

where here [55,56)
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/o =dy +v,. (A2)

The average cluster size also diverges for the critical prob-
ability

(5) = [ Poi(a)ds ~ (e =), (A3)
where
2 — Taval
Yo = — (A4)

In percolation theory [55,56] this exponent is called ~.
To avoid confusion with the growth exponent 3, we de-
note the exponent characterizing the mass of the infinite
cluster as 3,, where

Bp=1/0 — .

We calculated both 7.y, and o from the scaling of
P,yai(s) for d = 1,2. We obtained [15,16]

(A5)

Taval = 1.26 £0.02, 1/0=2.84+0.1 (d=1) (A6a)
and
Taval = 1.51£0.07, 1/0=29+0.3 (d=2).
(A6Db)

In 1 + 1 dimensions the value of ¢ is in good agreement
with the predictions of DP, 1/0 ~ 2.83. However, the
values of v, and 3, differ from the predictions of DP.
This is not surprising since the definitions of clusters in
both models are quite different. For the DPD model
the clusters are the avalanches (compact regions confined
between two DP paths), while the DP cluster are branchy
trees comprised of directed paths.

In percolation theory, the correlation lengths are de-
fined through the formulas

¢ = <S(’j:l> ~ (e — p)~2, (A7)

sR
= (p—p)

(A7b)
where the angular brackets denote an average of realiza-
tions of the disorder and R2 and Rﬁ are the perpendic-
ular and the parallel components of the square of the
radius of gyration of the avalanches

+2

R2 =h?2 -}, (A8a)

(A8b)

where the overbar denotes a spatial average for all cells
of the avalanche in a given realization of the disorder.
The relations (A7b) and (A8b) were applied to the cal-
culation of the correlation length exponents presented in
Sec. IV. The results obtained are in good agreement with
theoretical calculations for DP in 1 4+ 1 dimensions.

APPENDIX B: CALCULATING THE VELOCITY
EXPONENT

The purpose of this appendix is to propose an alterna-
tive method for the calculation of the velocity exponent
6. The traditional way to calculate 6 is to monitor the
average height of the interface after the system becomes
saturated. This is a very time consuming procedure for
two reasons. First, the dependence of the saturation time
t« on the system size tx ~ L? leads to an great increase
in computation time when we use large system sizes. Sec-
ond, the large fluctuations in the velocity of about its
average value leads to an increase in the number of runs
required for achieving good statistics. The reason for
the large fluctuations of the velocity are due to the fact
that, near the transition, the motion of the interface is
not smooth but rather is very “jerky,” i.e., short peri-
ods of jumpy motion are followed by long periods of near
immobility.

We assume that, before saturation, the velocity scales
with time as a power law with an exponent v

v(t, f) ~ t7¥ fs(t/tx),

with £ ~ . A comparison of (B1) with (1.6) implies
that f5(u) is a scaling function that satisfies f5(u <
1) =const, and fs(u > 1) ~ u¥ and that

(B1)

0=y 2. (B2)
The calculation of the exponents %, z, and v then allows
us to estimate §. Numerical tests reveal that (B2) is well
obeyed.

Relation (B2) can be combined with (3.9), leading to
the scaling law

Yv=1-0.

This relation provides an alternate method to check the
consistency of the scaling laws derived in the text.

(B3)

[1] T. Vicsek, Fractal Growth Phenomena, 2nd ed. (World
Scientific, Singapore, 1992), Pt. IV; Dynamics of Frac-
tal Surfaces, edited by F. Family and T. Vicsek (World
Scientific, Singapore, 1991); J. Kertész and T. Vicsek, in

Fractals in Science, edited by A. Bunde and S. Havlin
(Springer-Verlag, Heidelberg, 1994).

[2] J. Krug and H. Spohn, in Solids Far From Equilibrium:
Growth, Morphology and Defects, edited by C. Godréche



4672

(Cambridge University Press, Cambridge, 1991).

[3] P. Meakin, Phys. Rep. 235, 189 (1993).

[4] T. Halpin-Healey and Y.-C. Zhang, Phys. Rep. 254, 215
(1995).

[5] A.-L. Barabdsi and H. E. Stanley, Fractal Concepts
in Surface Growth (Cambridge University Press, Cam-
bridge, 1995).

[6] J.-F. Gouyet, M. Rosso and B. Sapoval, in Fractals and
Disordered Systems, edited by A. Bunde and S. Havlin
(Springer-Verlag, Heidelberg, 1991).

[7] J. P. Stokes, A. P. Kushnick, and M. O. Robbins, Phys.
Rev. Lett. 60, 1386 (1988).

[8] M. A. Rubio, C. A. Edwards, A. Dougherty, and J. P.
Gollub, Phys. Rev. Lett. 63, 1685 (1989); V. K. Horvath,
F. Family, and T. Vicsek, ibid. 65, 1388 (1990); M. A.
Rubio, C. A. Edwards, A. Dougherty, and J. P. Gollub,
ibid. 85, 1389 (1990).

[9] T. Vicsek, M. Cserzo, and V. K. Horvath, Physica A 167,
315 (1990).

[10] V. K. Horvath, F. Family, and T. Vicsek, J. Phys. A 24,
L25 (1991); Phys. Rev. Lett. 87, 3207 (1991).

[11] S. He, G. L. M. K. S. Kahanda, and P.-z. Wong, Phys.
Rev. Lett. 69, 3731 (1992).

[12] J. Zhang, Y.-C. Zhang, P. Alstrgm, and M. T. Levinsen,
Physica A 189, 383 (1992).

[13] S. Havlin, A.-L. Barabasi, S. V. Buldyrev, C. K. Peng,
M. Schwartz, H. E. Stanley, and T. Vicsek, in Growth
Patterns in Physical Sciences and Biology, Proceedings
of the NATO Advanced Research Workshop, Granada,
1991, edited by J. M. Garcia-Ruiz, E. Louis, P. Meakin,
and L. M. Sander (Plenum, New York, 1993).

[14] S. V. Buldyrev, A.-L. Barabasi, S. Havlin, F. Caserta,
H. E. Stanley, and T. Vicsek, Phys. Rev. A 45, R8313
(1992).

[15] S. V. Buldyrev, A.-L. Barabdsi, S. Havlin, J. Kertész,
H. E. Stanley, and H. S. Xenias, Physica A 191, 220
(1992); A.-L. Barabasi, S. V. Buldyrev, S. Havlin, G. Hu-
ber, H. E. Stanley, and T. Vicsek, in Surface Disordering:
Growth, Roughening and Phase Transitions, edited by R.
Jullien, J. Kertész, P. Meakin, and D. E. Wolf (Nova Sci-
ence, Commack, 1992).

[16] S. V. Buldyrev, S. Havlin, and H. E. Stanley, Physica A
200, 200 (1993); S. V. Buldyrev, S. Havlin, J. Kertész,
A. Shehter, and H. E. Stanley, Fractals 1, 827 (1993).

[17] L. A. N. Amaral, A.-L. Barabdasi, S. V. Buldyrev, S.
Havlin, and H. E. Stanley, Phys. Rev. Lett. 72, 641
(1994); Fractals 1, 818 (1993).

[18] F. Family and T. Vicsek, J. Phys. A 18, L75 (1985).

[19] F. Family, J. Phys. A 19, L441 (1986).

[20] P. Meakin, P. Ramanlal, L. M. Sander, and R. C. Ball,
Phys. Rev. A 34, 5091 (1986).

[21] J. M. Kim and J. M. Kosterlitz, Phys. Rev. Lett. 62,
2289 (1989).

[22] S. F. Edwards and D. R. Wilkinson, Proc. R. Soc. London
Ser. A 381, 17 (1982).

[23] M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. Lett.
56, 889 (1986).

[24] E. Medina, T. Hwa, M. Kardar, and Y.-C. Zhang, Phys.
Rev. A 39, 3053 (1989); C. K. Peng, S. Havlin, M.
Schwartz, and H. E. Stanley, ibid. 44, 2239 (1991); J. G.
Amar, P.-M. Lam, and F. Family, ibid. 43, 4548 (1991).

[25] Y.-C. Zhang, J. Phys. (Paris) 51, 2129 (1990); S. V.
Buldyrev, S. Havlin, J. Kertész, H. E. Stanley, and T.
Vicsek, Phys. Rev. A 43, 7113 (1991); S. Havlin, S. V.

L. A. N. AMARAL et al. 51

Buldyrev, H. E. Stanley, and G. H. Weiss, J. Phys. A 24,
L925 (1991).

[26] A.-L. Barabasi, Phys. Rev. A 46, R2977 (1992).

[27] L.-H. Tang and H. Leschhorn, Phys. Rev. A 45, R8309
(1992).

[28] M. Cieplak and M. O. Robbins, Phys. Rev. Lett. 60, 2042
(1988); N. Martys, M. Cieplak, and M. O. Robbins, ibid.
66, 1058 (1991).

[29] C. S. Nolle, B. Koiller, N. Martys, and M. O. Robbins,
Phys. Rev. Lett. 71, 2074 (1993); B. Koiller, M. O. Rob-
bins, H. Ji, and C. S. Nolle, in New Trends in Magnetic
Materials and their Applications, edited by J. L. Moran-
Lopez and J. M. Sanchez (Plenum, New York, 1993).

[30] D. A. Kessler, H. Levine, and Y. Tu, Phys. Rev. A 43,
4551 (1991).

[31] G. Parisi, Europhys. Lett. 17, 673 (1992); L. A. N. Ama-
ral (unpublished).

[32] H. Leschhorn, Physica A 195, 324 (1993).

[33] M. Dong, M. C. Marchetti, A. A. Middleton, and V.
Vinokur, Phys. Rev. Lett. 70, 662 (1993).

[34] M. Benoit and R. Jullien, Physica A 207, 500 (1994).

[35] D. Spasojevic and P. Alstrgm, Physica A 201, 482
(1993).

[36] Z. Csahdk, K. Honda, and T. Vicsek, J. Phys. A 26, L171
(1993); Z. Csahék, K. Honda, E. Somfai, M. Vicsek, and
T. Vicsek, Physica A 200, 136 (1993).

[37] L. A.N. Amaral, A.-L. Barabasi, and H. E. Stanley, Phys.
Rev. Lett. 73, 62 (1994); H. A. Makse, A.-L. Barabisi,
and H. E. Stanley (unpublished).

[38] L.-H. Tang, M. Kardar, and D. Dhar, Phys. Rev. Lett.
74, 920 (1995).

[39] H. A. Makse and L. A. N. Amaral (unpublished).

[40] T. Nattermann, S. Stepanov, L.-H. Tang, and H.
Leschhorn, J. Phys. (France) II 2, 1483 (1992).

[41] O. Narayan and D. S. Fisher, Phys. Rev. B 48, 7030
(1993).

[42] R. Bruinsma and G. Aeppli, Phys. Rev. Lett. 52, 1547
(1984).

[43] K. Sneppen, Phys. Rev. Lett. 69, 3539 (1992); L.-H. Tang
and H. Leschhorn, ibid. 70, 3832 (1993); K. Sneppen and
M. H. Jensen, ibid. 70, 3833 (1993).

[44] K. Sneppen and M. H. Jensen, Phys. Rev. Lett. 71, 101
(1993).

[45] H. Leschhorn and L.-H. Tang, Phys. Rev. E 49, 1238
(1994).

[46] Z. Olami, I. Procaccia, and R. Zeitak, Phys. Rev. E 49,
1232 (1994).

[47] S. Maslov and M. Paczuski, Phys. Rev. E 50, R643
(1994).

[48] P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett.
59, 381 (1987).

[49] P. Bak and K. Sneppen, Phys. Rev. Lett. 71, 4083 (1993);
M. Paczuski, S. Maslov, and P. Bak, Europhys. Lett. 27,
96 (1994); S. Maslov, M. Paczuski, and P. Bak, Phys.
Rev. Lett. 73, 2162 (1994).

[50] T. Ray and N. Jan, Phys. Rev. Lett. 72, 4045 (1994); B.
Jovanovi¢, S. V. Buldyrev, S. Havlin, and H. E. Stanley,
Phys. Rev. E 50, R2403 (1994).

[51] B. Suki, A.-L. Barabdsi, Z. Hantos, F. Petik, and H. E.
Stanley, Nature 368, 615 (1994).

[52] Smaller pinning regions might become totally surrounded
by the wet region. However, because of the surface ten-
sion that acts to decrease the size of the interface between
the wet and the dry regions, these dry “islands” inside



s1 AVALANCHES AND THE DIRECTED PERCOLATION ... 4673

the wet region eventually become wet.

[53] We introduce this time-dependent randomness in the
model to mimic the experimental fact that for F' > F, a
transition to the KPZ behavior with annealed disorder is
observed for £ >> £. For smaller length scales the effect of
this annealed randomness is irrelevant.

[54] The justification of this particular rule lies not only on
the computational simplifications that it affords but also
on the experimental finding that overhangs do not play
an important role in the scaling properties of the interface
for imbibition.

[55] D. Stauffer and A. Aharony, Introduction to Percolation
Theory, 2nd ed. (Taylor & Francis, London, 1992).

[56] Fractals and Disordered Systems (Ref. [6]); S. Havlin and
D. Ben-Avraham, Adv. Phys. 36, 695 (1987).

[57] J. W. Essam, K. De’Bell, J. Adler, and F. M. Bhatti,
Phys. Rev. B 33, 1982 (1986); J. W. Essam, A. J.
Guttmann, and K. De’Bell, J. Phys. A 21, 3815 (1988).

[58] S. Havlin, L. A. N. Amaral, S. V. Buldyrev, S. T. Har-
rington, and H. E. Stanley, Phys. Rev. Lett. (to be pub-
lished).

[59] We found that the values of z could be well approximated

by the mnemonic formula z = 2 —[(6 —d)/5]>/%. Although

this expression is incompatible with an € expansion and
so cannot be correct, it can be useful in the estimation
of the exponents.

For the study of the avalanches it is more convenient to

consider a new definition of the unit time in which, for

each time step, all unblocked nearest neighbors to the
invading region also become invaded. This means that
we make a parallel updating of the system. For p close to

Pec, this produces no changes in the results; however, for

p < pc this parallel updating leads to an essentially flat

interface.

(60

[61] S. V. Buldyrev, S. Havlin, J. Kertész, R. Sadr, A.
Shehter, and H. E. Stanley (unpublished); see also the
application of the Cayley tree to avalanches in lung in-
flation [B. Suki, A.-L. Barabasi, S. V. Buldyrev, and H.
E. Stanley (unpublished)].

[62] This definition of time results in multiaffine [63] scaling
of the time-dependent height-height correlation functions
[44].

[63] A.-L. Barabasi and T. Vicsek, Phys. Rev. A 44, 2730
(1991); A.-L. Barabdsi, P. Szépfalusy, and T. Vicsek,
Physica A 178, 17 (1991).

(64] In this work we refer to evaporation as the origin of the
gradient. However, other factors also affect the value of
the experimental gradient, among them the density of
the suspension. Indeed, our experiments confirm this idea
and suggest that the model accounts for all these effects.

[65] We stress the fact that the actual disorder in the paper
is height independent. However, due to the decrease in
capillary pressure with height, the effect of the inhomo-
geneities is increasing with height. In the model we take
account of this changing balance between capillary pres-
sure and strength of the inhomogeneities by introducing
a gradient in the “effective” density of pinning obstacles.

[66] B. Sapoval, M. Rosso, and J. F. Gouyet, J. Phys. (Paris)
Lett. 46, L149 (1985); M. Rosso, J. F. Gouyet, and B.
Sapoval, Phys. Rev. Lett. 57, 3195 (1986).

(67] D. Wilkinson, Phys. Rev. A 30, 520 (1984); 34, 1380
(1986).

[68] A. Birovljev, L. Furuberg, J. Feder, T. Jgssang, K. J.
Malgy, and A. Aharony, Phys. Rev. Lett. 67, 584 (1991).

[69] A. Hansen, T. Aukrust, J. M. Houlrik, and I. Webman, J.
Phys. A 23, L145 (1990); A. Hansen and J. M. Houlrik,
ibid. 24, 2377 (1991).



: |

FIG. 10. Illustration of the dynamics of the DPD model for
1 + 1 dimensions. (a) Schematic representation of a region
defined by two pinning paths. The heavy circle indicates the
origin for the invasion, the thin arcs represent the positions
of the invading front at successive times, and the dashed line
represents schematically the path for the invasion. (b) Simu-
lation results for invasion after 2'° time steps starting from
a single cell near the center. We show the invaded region at a
sequence of times that are multiples of 128. Regions invaded
at later times are displayed in darker shades of gray. The
path from the origin to the latest invaded point is shown in
black. Although this path displays some fluctuations in the
vertical direction, they can be disregarded since v > v, so
as p — pe, £1/€; — 0. Thus the distance propagated by the
invading front is proportional to time. Since tx ~ £, we can
conclude that z = dmin = 1.
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FIG. 11. Illustration of the dynamics of the DPD model
for 2 + 1 dimensions. (a) Schematic representation of the
zy projection of the region defined by two pinning self-affine
DSs. The heavy circle indicates the origin for the invasion, the
thin arcs represent the zy projections of the invading front at
successive times, and the dashed line represents schematically
the path for the invasion. (b) Simulation results for invasion
after 2'° time steps starting from a single cell located to the
left of the center. We show the xy projection of the invaded
region at a sequence of times that are multiples of 128. Re-
gions invaded at later times are displayed in darker shades
of gray. It is visually apparent that it takes a long time to
invade some regions close to the origin because the path to
that position (shown in black) appears to be a fractal curve of
dimension greater than one. The fluctuations in the vertical
direction can be disregarded since we know that £, /& — 0.
We find that the path can be identified with the shortest path
(the “chemical distance”) of isotropic percolation and that its
length scales with the linear distance r to the point as r%min,



FIG. 2. (a) Schematic illustration of the experimental
setup. In the 1+ 1-dimensional experiments we use paper tow-
els as the disordered media and coffee as the invading fluid.
The edge of the paper towels is 20 cm. (b) Photographs of
pinned interfaces in imbibition experiments with coffee and
paper towels for (i) a high evaporation rate gexpr = 0.94g0
and (ii) a low evaporation rate gexp: = 0.25g,. Here go is the
undetermined multiplicative constant discussed in Sec. V.



FIG. 4. Digitized ink interface in the (a) Oasis brick and
(b) paper roll using an Apple computer scanner with a reso-
lution of 300 pixels per inch. In (¢) we show the full image
from which (b) was magnified. The brick has a section of 7x 7
cm? and the paper roll an exterior radius of 7.5 cm and an
interior radius of 1.75 cm.
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FIG. 6. Example of the application of the growth rule to a
particular configuration of the interface. White squares refer
to dry unblocked cells, the darker squares refer to dry blocked
cells, and the gray squares refer to wet cells. The tick line
shows the position of the interface. Let us suppose that the
column indicated by the arrow in (a) was chosen for growth.
According to our model, the cells marked 1 will become wet
because they are nearest neighbors to the wet region. After
the wetting, we can see in (b) that the cell marked 2 is below
a wet cell, applying the rule to erode any overhang we wet
that cell. In (¢) we show the configuration of the interface
after the growth (thick line).



(b)

FIG. 9. (a) Initial conditions in the DPD model for the
growth of single avalanches: all sites in the bottom edge ex-
cept one are blocked. The color convention for the cells is
the same as in Fig. 6. (b) The wet region after some time;
the quantity n(t) defined in the text counts the number of
unblocked cells in the interface, in this case 8. (c¢) Horizontal
projection of an avalanche in 2+ 1 dimensions for p ~ p.. The
avalanche was started at the center of the figure and is shown
at time 2'°. The current diameter of the cluster is approxi-
mately 2'°. The uniform gray area shows the region left dry
since the beginning of the process. The darkest shade of gray
corresponds to the largest heights of the interface. The black
dots, forming a “fractal dust,” indicate the unblocked cells at
the interface.



