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CHAPTER 9

Power Law Correlations in DNA Sequences

Sergey V. Buldyrev*

Introduction

Awide variety of natural phenomena is characterized by power law behavior of their
parameters. This type of behavior is also called scaling. The first observation of scaling
probably goes back to Kepler1 who empirically discovered that squares of the periods of

planet revolution around the Sun scale as cubes of their orbits radii. This empirical law allowed
Newton to discover his famous inverse-square law of gravity.

In the nineteenth century, it was realized that many physical phenomena, for example
diffusion, can be described by partial differential equations. In turn, the solutions of these
equations give rise to universal scaling laws. For example, the root mean square displacement of
a diffusing particle scales as the square root of time.

In the twentieth century, power laws were found to describe various systems in the vicinity
of critical points. These include not only systems of interacting particles such as liquids and
magnets2 but also purely geometric systems, such as random networks.3 Scaling is also found to
hold for polymeric systems, including both linear and branched polymers.4 Since then, the list
of systems characterized by power laws has grown rapidly including models of rough surfaces,5

turbulence and earthquakes. Empirical power laws are found to characterize also many physi-
ological, ecological, and socio-economic systems. These facts give rise to the increasingly ap-
preciated “fractal geometry of nature”.6-15

A major puzzle concerning genomes of eukaryotic organisms, is that the large percent of
their DNA is not used to code proteins or RNA. In human genome, this “junk” DNA consti-
tutes 97% of the total genome length which is equal to 3 billion nucleotides also called
base-pairs (bp). The role of non-coding DNA is poorly understood. It seems that it evolves by
its own laws not restricted by a specific biological function. These laws are based on prob-
abilities of various mutations and as such resemble the laws governing other complex systems
listed above. In this chapter, I will review the degree to which power laws can characterize
fluctuating nucleotide content of the DNA sequences, see also a critical review of W. Li.16

The term “long range correlations” is often misunderstood, implying some mystical
long-range interactions or information propagation in space. Therefore, I will start with a
brief introduction in the theory of critical phenomena, in which this concept has been
developed. An impatient reader can jump directly to section “Correlation Analysis of DNA
Sequences”.

*Sergey V. Buldyrev—Department of Physics, Yeshiva University, 500 West 185th Street,
New York, New York 10033, U.S.A. Email: buldyrev@yu.edu
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124 Power Laws, Scale-Free Networks and Genome Biology

Critical Phenomena and Long Range Correlations
One of the greatest advances in physics in the second half of twentieth century was the

development of modern theory of critical phenomena.2 The central paradigm of this theory is
the importance of local fluctuations of the order parameter (Fig. 1). For a gas-liquid critical
point, the order parameter is simply density. For the Curie point of a ferromagnetic, it is mag-
netization. Near the critical point Tc, the characteristic length scale ξ of the fluctuations, also
known as the correlation length, grows according to a power law

    ξ
υ

~ .T Tc
c−

− (1)

The difference between the order parameters in the two phases (e.g., densities of gas and
liquid) ρl – ρg vanishes as the temperature approaches the critical point also according to a
power law

    ρ ρ
β

l g cT T c− −( )~ . (2)

The positive quantities υc and βc are called critical exponents. There are many other criti-
cal exponents αc, γc, δc, ηc, etc., which characterize critical behavior of other parameters of the
system.

The most spectacular manifestation of critical phenomena is critical opalescence. If one
heats a closed transparent container filled by one third with water, the pressure inside it increases
so that water and vapor remain at equilibrium: the water-vapor boundary is clearly visible and
both phases are transparent. However, when the temperature approaches Tc = 374˚C within
1˚C, the phase boundary disappears, and the substance in the container becomes milky: the
density fluctuations scatter light because their average size becomes larger than the wave length
of light which is about half a micron. Thus the correlation length becomes more than thousand
times larger than the average distance between molecules which is about 0.3 nanometers.

Since the fluctuations near the critical point become extremely large, the details of the
interaction potential which acts on much smaller scales become irrelevant and hence all liquids

Figure 1. A snapshot of a two-dimensional system near its critical point. Black pixels represent gas particles.
One can see density fluctuations of all different scales from a single particle to patches comparable with the
entire system. This picture also represents an Ising magnetic near the Curie point, where black pixels are spins
in positive orientation and white pixels are spins in negative orientation. The picture is obtained by com-
puter simulations using the Metropolis algorithm at T = Tc = 2.269185.
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Power Law Correlations in DNA Sequences

near the critical point have the same scaling behavior, i.e., they have exactly the same critical
exponents, namely νc ≈ 0.64 and βc ≈ 0.33. Moreover, the theory predicts, that critical expo-
nents are connected by several scaling relations, so that knowing any two exponents, for ex-
ample νc and βc one can predict the values of all the others. It turns out, that critical exponents
depend only on dimensionality of space and some other major characteristics, such as dimen-
sionality of spin orientations for magnetics. Thus, all variety of critical points can be classified
by few universality classes so that all systems belonging to the same universality class have
exactly the same values of critical exponents.

One of the simplest models for critical phenomena, the Ising model,17 belongs to the same
universality class as the liquid-gas critical point. We will discuss this model in greater detail, since
it was first used by M. Ya. Azbel to describe possible correlations of nucleotides in the DNA.18-20

In the Ising model, atoms occupy sites on the d-dimensional lattice, for example on a
square or a cubic lattice. In a one-dimensional system, atoms are placed equidistantly on a line.
Each atom has a magnetic moment or spin, which may have only two orientations: up (s = +1)
or down (s = -1). All pairs of spins occupying nearest neighboring sites interact with each other,
so that they have a tendency to acquire the same orientation. The pair with the same orienta-
tions has negative potential energy -ε while the pair with different orientations has positive
potential energy +ε. Note that ε < 0 corresponds to the model of anti-ferromagnetic interac-
tions. In addition, spins may interact with external magnetic field with energies -h for positive
spins and +h for negative spins. It can be shown that this model is equivalent to the model of
lattice gas, in which positive orientation of spins corresponds to the sites occupied by mol-
ecules, negative orientation indicates empty sites, two neighboring molecules attract with en-
ergy -ε, and the external field h corresponds to chemical potential which defines the average
number of molecules in the system.

In 1973, M. Ya. Azbel18 mapped a DNA sequence onto a one-dimensional Ising model by
assigning positive spins s = +1 to strongly bonded pairs cytosine (C) and guanine (G) and
negative spins s = -1 to weakly bonded pairs adenine (A) and thymine (T). (Complimentary
base-pairs C and G located on the opposite strands of the DNA double helix are bonded by
three hydrogen bonds, while A and T are boned only by two hydrogen bonds.)

One-Dimensional Ising Model
It is easy to solve the one-dimensional Ising model. According to the Boltzmann equation,

the probability p(U) to find a thermally equilibrated system in a state with certain potential
energy is proportional to

    p U U k TB( ) −( )~ exp / , (3)

where T is absolute temperature and kB is Boltzmann constant. A striking simplicity of this
equation is that it does not depend on any details of inter-atomic interaction and the details of
motion of individual molecules. Once we know U and T, we can completely characterize our
system in terms of the probability theory.

In the one-dimensional Ising model, a spin at position i can affect a spin at position i + 1
only through their direct interaction which is either -ε if they orient the same way or +ε if they
orient in the opposite way. In the absence of magnetic field, the probabilities of these two
orientations are proportional to exp(-U/kBT), where U = ±ε. Hence the probability of the same
orientation is

p k T k T k T bB B B= ( ) ( ) + −( )[ ] ≡ +( )exp / / exp / exp / / ,ε ε ε 1 1 (4)

where b = exp(-2ε/kBT) and the probability of the opposite orientation is q = 1 – p = b/(1 + b).
Clearly, if T is small enough, b is also very small, and hence the probability for two neighboring
spins to be in the same orientation is almost equal to one.

09Koonin(Buldyrev)PartA 9/16/05, 10:59 AM125



©
20

06
 C

op
yr

ig
ht

Eu
re

ka
h 

/ L
an

de
s 

Bi
os

ci
en

ce

D
o 

N
ot

 D
is

tri
bu

te

126 Power Laws, Scale-Free Networks and Genome Biology

Do spins at a distant positions i and (i + r) affect each other? To answer this question we
must quantify this affect in mathematical terms. Two random variables s(i) and s(i + r) are
called independent if the average of their product 〈s(i)s(i + r)〉 is equal to the product of their
averages 〈s(i)〉 and 〈s(i + r)〉. Here and throughout the entire chapter 〈…〉 denotes average taken
over all possible positions i of the spins or nucleotide positions in a DNA sequence. The differ-
ence between these two quantities

C r s i s i r s i s i r

s i s i s i r s i r

( ) ≡ ( ) +( ) − ( ) +( )

= ( )− ( )[ ] +( )− +( )[ ]
(5)

characterizes the mutual dependence of two spins and is called correlation function. If C(r) > 0,
the spins are correlated. If C(r) < 0, the spins are anti-correlated. Note that C(0) coincides with
the definition of variance of the variable s(i). Note also that in general, for finite system of size
L,〈s(i)〉 ≠ 〈s(i + r)〉, because these two averages are taken over two different sets of positions i =
1,2...L – r and i + r = r + 1,r + 2,..., L. When r is comparable to L, this difference becomes
substantial.

It can be easily shown (see next section) that for a one-dimensional Ising model the corre-
lations decay exponentially C(r) ~ exp(-r/ξ) at any temperature. The inverse speed of the expo-
nential decay ξ is identical to the correlation length. In the one-dimensional model, correlation
length can diverge only if temperature approaches absolute zero. Thus the critical point for the
one-dimensional model is Tc = 0.

In the next section we will show this by making a mathematical excursion into the theory
of Markovian processes, which is a very useful tool in bioinformatics. This chapter may be
omitted by a reader who does not want to go deep into mathematical details, but is useful for
those whose goal is to apply mathematics in biology.

Markovian Processes
In order to compute correlation function, we will represent a sequence of spins in the

Ising model as a Markovian process. Markovian processes are very important in bioinformatics,
thus we briefly summarize their definition and properties.

A Markovian process21 is defined as a process obeying the following rules. (i) A system at
any time step t, can be in n possible states e1,e2,...en. (ii) The probability to find a system in a
certain state at any time step depends only on its state at the previous time step. Thus to fully
characterize a Markovian process, we must define a n x n set of transition probabilities pij which
are the probabilities to find a system in a state ei at time t + 1 provided that a time t it was in a
state ej. Obviously,     i

n
=∑ 1pij ≡ 1. (iii) It is assumed that pij do not depend on time.

It is convenient to describe the behavior of a Markovian process in terms of vector algebra,
so that the probabilities pi(t) to find a system in any of its n states at time t is an n-dimensional
vector-column p(t). The sum of its components pi(t) is equal to unity. Accordingly, it is natural
to arrange the transition probabilities pij into a n x n matrix P. The j-th column of this matrix is
the set of transitional probabilities pij. Using the rule of matrix multiplication combined with
the law of probability multiplication for independent events, we can find

      p P pt r tr+( ) = ( ), (6)

where Pr is the r–th power of matrix P, which can be easily found once we determine eigenvec-
tors ai and eigenvalues λi of matrix P. By definition, eigenvectors and eigenvalues satisfy a
homogeneous system of linear equations

      Pa i i i= λ a . (7)
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Power Law Correlations in DNA Sequences

which has a nontrivial solution only if its determinant is equal to zero. Accordingly, the eigen-
values satisfy an algebraic equation of n-th power which turns the determinant of the matrix
P – λΙ, where Ι is the unity matrix, into zero.

Once we have determined the eigenvectors and eigenvalues, we can write

      P A Ar r= ΛΛ -1, (8)

where Λ is the diagonal matrix formed by eigenvalues λi, and A is the matrix whose columns
are eigenvectors ai.

Since the sum of elements in every column of matrix P is unity, the determinant of the
matrix P – Ι is equal to zero and one of the eigenvalues must be equal to unity: λ1 = 1. The
eigenvector a1, corresponding to this eigenvalue has a very special meaning. Its components
yield the probabilities to find the system in each of its states for r → ∞. We will show it in the
following paragraph.

Except in some special degenerate cases, all the eigenvalues of a matrix are different. As-
suming this, we can express the state of the system at time t = r as a linear combination of the
eigenvectors:

        p a a at r c c cr
n n

r
n+( ) = + + +1 1 2 2 2λ λK

where cn are some coefficients, which can be obtained by multiplying the initial state of the
system p(t) by matrix A-1. It can be easily seen from this equation that all eigenvalues must be
less or equal to one: ⎟λi⎟ ≤ 1. Indeed, if any ⎟λi⎟ > 1, the corresponding term in the above
equation would diverge for r → ∞, contradicting inequality pi(r) ≤ 1, which must be satisfied
by the probabilities. Thus for all i > 1, ⎟λi⎟ < 1, and for any initial state of the system, we have
limr → ∞p(r + t) = c1a1.

Thus, the average probability of finding the system in each of its states in a very long
process is determined by the vector c1a1, which can be readily found from the system of linear
equations:

    Pa a1 1= . (9)

Since the determinant of this system is equal to zero, it has a nontrivial solution c1a1,
where c1 is an arbitrary constant. Since the components of the vector c1a1 have the mean-
ing of the probabilities and, therefore, their sum must be equal to one, the coefficient c1

must be the reciprocal of the sum of the elements of an arbitrary non-trivial solution a1 of
Eq. (9).

The second-largest eigenvalue determines the decay of the correlations: C(r) ~     λ2
r  = exp(r

ln λ2). By definition, the correlation length is the characteristic length of correlation decay
which is determined by relation C(r) ~ exp(-r/ξ). Thus ξ = 1/ ln(1/λ2).

As an illustration of the Markovian formalism we can apply it to the one-dimensional
Ising model. The matrix P in this case is simply

      
P =

−

−

⎛

⎝
⎜

⎞

⎠
⎟

p p

p p

1

1
 , (10)

where p is determined by Eq. (4). In order to find the eigenvalues, we must find the values of λ
which turn the determinant of the matrix P – λΙ into zero:

p p

p p

− −

− −
=

λ

λ

1

1
0. (11)
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128 Power Laws, Scale-Free Networks and Genome Biology

This gives us a quadratic equation (p – λ)2 – (1 – p)2 = 0, with two roots λ1 = 1, and λ2 =
2p – 1. The corresponding eigenvectors are

    

a a1

1
2
1
2

2
1

1
=
⎛

⎝
⎜

⎞

⎠
⎟ =

−⎛

⎝
⎜

⎞

⎠
⎟     . (12)

Accordingly, we have

    

A A=
−⎛

⎝
⎜

⎞

⎠
⎟ =

−

⎛

⎝
⎜

⎞

⎠
⎟

1
2
1
2

1
2

1
2

1

1

1 1
 ,      .-1 (13)

and using Eq.(8),

      

P r
p p

p p

r r

r r=

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

+ −( ) − −( )

− −( ) + −( )

1 2 1

2

1 2 1

2
1 2 1

2

1 2 1

2

 . (14)

So we can see that the diagonal elements of this matrix, p(r) = 1/2 + (2p – 1)r/2 exponentially
converge to 1/2 for r → ∞. The speed of convergence determines the correlation length:

ξ ε ε= − −( ) = ( ) +[ ] ( )−[ ]{ }1 2 1 1 2 1 2 1/ln / ln exp / / exp / .p k T k TB B (15)

For T → 0 the correlation length diverges ξ ≈ exp(2ε/kBT) → ∞, while for T → ∞ the
correlation length approaches zero: ξ ≈ 1/ ln(kBT/ε) → 0. For finite temperature the correla-
tion length is finite. Hence for one-dimensional Ising model, there is no critical point at posi-
tive temperatures, however the absolute zero T = Tc = 0 can be treated as a critical point because
in its vicinity the correlation length diverges faster than any power. So one can identify expo-
nent νc as being infinite.

The eigenvector a1 gives us equal probabilities for a spin to be in positive and negative
orientations, thus the spontaneous magnetization being determined as 〈s(t)〉 = a11 – a21 = 1/2 –
1/2 = 0 remains zero for all temperatures. In order to compute correlation function, we must
compute the average product 〈s(t)s(t + r)〉. With probability a11 the value s(t) = 1. Given s(t) =
1, the probabilities of s(t + r) = 1 and s(t + r)= -1 are equal to the elements of the first column of
matrix Pr. Analogously for s(t) = -1, which occurs with probability a21, the probabilities of s(t +
r)= 1 and s(t + r)= -1 are given by the elements in the second column of matrix Pr. So

s t s t r a p r p r a p r p r p
r( ) +( ) = ( )− ( )[ ] − ( )− ( )[ ] = −( )11 11 21 21 21 22 2 1 (16)

and, therefore,

C r p
r( ) = −( )2 1 . (17)

Exponential versus Power Law Correlations
In the previous section, we see that the one-dimensional Ising model in the absence of

magnetic field is equivalent to a two-state Markovian process. In general, it is clear that any
one-dimensional model with short range interaction is equivalent to a Markovian process with
a finite number of states, and for such a process correlations must decay exponentially as     λ2

r ,
where λ2 < 1. Thus the correlation length must be finite and can diverge only for T → 0.
Intuitively, we can imagine a one dimensional model as a row of dancing people each holding
hands with two neighbors: one is on the left and one is on the right. Once they are holding
hands, the correlation can pass from one neighbor to the next. No matter how strong they are
holding hands, there is a finite chance q that they will separate, and the correlation will stop.
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Power Law Correlations in DNA Sequences

The probability that the correlation spreads distance r is proportional to (1 – q)r ≈ exp(–qr),
and hence the correlation length is finite and is inverse proportional to q.

In contrast, if the number of dimensions is larger than one, the interactions can propagate
from point A to point B not only along a straight line from one neighbor to the next, but along
an infinite number of possible paths connecting A and B. Accordingly, the correlation length
can diverge for T = Tc > 0. Unfortunately, there are very few 2-dimensional models which can
be solved exactly17 and even those models have so complicated solutions that they are far
beyond the scope of most physics textbooks. The most famous example of an exactly solvable
2-dimensional model is the Ising model, which was solved by Onsager in 1949. The solution is
based on transfer matrices much more complicated than those we use in Section IV to solve the
one dimensional model. It is much easier to simulate such a model on a computer and find an
approximate numerical solution.

It can be shown that two-dimensional Ising model has a critical point at temperature Tc =
2ε/ln(1 +  2 )/kB = 2.269ε/kB. At the vicinity of this temperature, the correlation function
acquires a non-exponential behavior

    C r r r( ) −( )−~ /η ξ exp (18)

where η = -1/4 is a new critical exponent proposed by M. Fisher in 1964. The correlation
length ξ diverges as ⎟T – Tc⎟-1, which means that νc = 1. The spontaneous magnetization for T
< Tc is not equal to zero, but, for any sample, it can be either positive or negative.

The absolute value of spontaneous magnetization approaches zero for T → Tc as (T – Tc)1/8,
so βc = 1/8. If the temperature increases above Tc (also known as Curie point), the sample loses
its magnetization. This phenomenon can be observed by everyone in a kitchen-style experi-
ment: take an arm from a compass, place it into the fire of the burner and keep it there until it
starts to glow red. The Curie point for Iron is 700˚C. Cool it and place it back into the com-
pass. It does not show North any longer!

Figure 1 shows the results of a computer simulation of a two-dimensional Ising model on
the L × L = 1024 × 1024 square lattice. The program is very simple. At any time step, a
computer attempts to “mutate” a spin at a randomly chosen lattice site. It first computes the
energy change ∆U in such a would be mutation. If ∆U ≤ 0 the mutation always happens, if ∆U
> 0, it happens with probability exp(–∆U/kBT). This algorithm invented by Metropolis in
1953,22 leads to the Boltzmann distribution (3) of the probabilities to find a system in a state
with total potential energy U. The proof of this fact is based on the theory of Markovian
processes. Indeed, the set of Metropolis rules of flipping the spins can be represented as a
transition matrix P with transition probabilities pijexp(–Uj/kBT) = pjiexp(–Ui/kBT), where Ui
and Uj are the potential energies of the corresponding states. Obviously, vector a1 with compo-
nents ai1 = exp(–Ui/kBT) taken from the probability distribution (3) satisfies Eq. (9).

The system has periodic boundary conditions, so that pixels on the opposite edges of the
system are in close proximity. In fact, the entire system can be viewed as a single line winded
around the surface of a bagel. In such a system, site i has 4 neighbors i + 1, i – 1, i + L, and i – L,
so the correlation can make really long jumps of length L and –L along the line.

Black and white pixels show spins with positive and negative orientations respectively.
One can see patches of irregular shapes and all possible sizes from very small, of one pixel size,
to the giant one spanning the entire system. This scale-free property of patches is typical for
systems with long range correlations with power law decay. Indeed, exponential decay of corre-
lations C(r) ~ exp(–r/ξ) would imply a typical size ξ of patches so that the probability to find
larger patches is exponentially small. The same picture can describe the behavior of gas par-
ticles near critical point. The molecules form clusters of all possible sizes which scatter light.
Does this picture have anything to do with DNA?
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130 Power Laws, Scale-Free Networks and Genome Biology

It is well known that the DNA sequence has a mosaic structure23 with patches of high
concentration of strongly bonded CG base pairs alternating with patches of weakly bonded AT
base pairs. These patches are called isochores and can span millions of base pairs. On a smaller
scale of genes and exons, coding sequences have larger CG content than non-coding sequences.
Finally there exist CpG islands of several hundred base pairs with high CG content.

May these patches have anything to do with Ising model? Of course DNA is not at thermal
equilibrium and the concepts of temperature and potential energy cannot be applied to the study
of its evolution. However, the evolution of DNA may be thought of as a Markovian process,
similar to the Metropolis algorithm described above with mutation probabilities depending on
the nature of neighboring nucleotides and on the pool of the surrounding nucleotides during
replication process, which may be viewed as an external field or chemical potential.

There are several main objections to this idea:
1. First objection: the DNA chain is one dimensional. As we have seen above, long range

correlations cannot exist in a one dimensional system.
This objection can be easily overcome by the argument that the DNA molecule has an
extremely complex three dimensional structure in which distant elements along the chain
are in close geometrical proximity. Thus the correlation may propagate not only along the
chain but may jump many steps ahead as in a toroidal Ising model shown in Figure 1. In
1993 Grosberg et al24 proposed a model based on the distribution of loops in the polymer
chain crumpled into a dense globular conformation. This simple model leads to the long
range correlations decaying as a power law r-γ, where γ ≈ 2/3.

2. Second objection. The long-range correlations emerge only in the narrow vicinity of the
critical point. Why in the biological system such as DNA, the probabilities of mutations are
such that they correspond to the vicinity of the critical point?
This objection is more difficult to overcome. However there are examples of simple models
which drive themselves to the critical behavior. The most relevant example is a polymer
chain in the solvent, in which the probability to find a monomer in a unit volume at
distance r from a given monomer decays as r1/ν–3, where ν ≈ 0.59 is the correlation length
exponent first determined by a Nobel prize winner P. Flory in 1949. In 1972, another
Nobel prize winner P. G. de Gennes4 mapped the problem of self-avoiding walks (which are
believed to describe the behavior of polymers) to a model of a magnetic similar to an Ising
model. He showed that the inverse polymer chain length 1/N is equivalent to the distance
to the critical point T – Tc , and hence the correlation length ξ (which is equivalent to the
radius of the polymer coil) grows as Nν. A polymer chain has also a power law distribution
of loops, determined by Des Cloiseaux.25

In recent years, many models have been proposed that have a tendency of self organization
(SOC) toward their critical points without any tuning of external parameters.26,27 These
models give rise to scaling, and produce sudden avalanche-like bursts of activity distributed
according to a power law. Some SOC models are one-dimensional systems and have been
applied to biological evolution.28-30 Such models are of great interest and they might be
relevant in studies of DNA sequences.

3. Third objection. Biological evolution is an extremely complex process which is governed
by many different mechanisms acting at different length and time scales. The interplay of
several characteristic length scales may lead to apparent power-law correlations, which thus
lack universality of critical phenomena.23

This objection is most probably correct. Indeed, the values of the correlation exponent are
different for different species and change with distance r between the nucleotides (See sec-
tion “Analysis of DNA Sequences”). Never the less, in the beginning of 1990s when the first
long DNA sequences became publicly available, the idea to study them by correlation analysis
attracted lot of attention.31-41
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Power Law Correlations in DNA Sequences

Correlation Analysis of DNA Sequences
Can correlation analysis be applied to DNA sequences? For a physicist or mathematician

a DNA sequence looks like a text written in an unknown language, which is encoded in a
4-letter alphabet A, C, G, T. Each letter in this text corresponds to a DNA base pair. The first
question one might ask is what is the overall fraction or frequency of each letter in this text. For
example the frequency of letter “A”, fA is defined as fA = NA/N, where NA is the number of
letters “A” and N is the total length of the sequence.42 This question is easy to answer, especially
these days, when the total human genome is sequenced. In human genome, fA = fT ≈ 0.295 and
fG = fC ≈ 0.205. Note that these numbers strongly depend on the organism under study. The
second question one might ask: “Is there any apparent structure in this text, or it is indistin-
guishable from a text that would be typed by throwing a 4-sided dice?” (This dice can be made
in the form of a Jewish toy, dreidel, with letters A, C, G, T on its sides which have slightly
different surface areas, so that the probability of getting a letter on the top is equal to its
frequency in the genome). For a text created by throwing such a dice, the events of getting any
two letters at positions k and j are believed to be independent, so the probability of simulta-
neously getting letter X at position k and letter Y at position j is equal to the product fX fY. If
there is any structure in the text, the frequency fXY (r) of finding X at position k and Y at
position k + r will deviate significantly from the predicted value fX fY.

To fully characterize all dependencies among four letters of the DNA alphabet one must
compute 16 elements of dependence matrix DXY(r) = fXY (r) – fX fY.43 These dependence coeffi-
cients are equivalent to correlation functions used in the previous section to describe Ising
model if the nucleotide sequence is replaced by a numerical sequence sx(k) = 1 if nucleotide X
is present at position k and sx(k) = 0 otherwise:

D r s k s r k s k s k rXY X Y X Y( ) = ( ) +( ) − ( ) +( ) , (19)

where 〈…〉 indicates the average over all k.
All other measures of correlations including nonlinear measures such as mutual infor-

mation.43-45 can be expressed via dependence coefficients. For example, one can introduce
Purine-Pyrimidine (RY) correlation measure, in which any purine (A,G) is replaced by 1 and
any pyrimidine (C,T) is replaced by -1. The numerical sequence for RY can be expressed as
a linear combination of numerical sequences for each nucleotide sRY = sA – sC + sG – sT.
Accordingly,

    

C r s k s k r s k s k r

D D D D D D D D D D

RY RY RY RY RY

AA CC GG TT AG CT GT TT AC AT

( ) = ( ) +( ) − ( ) +( )
= + + + + + − − − −( )

,

.

 

2
(20)

Analogously, one can introduce CSW, (S = C,G; W = A,T) or CKM (K = A,C; M = G,T) or
any other correlation function based on a linear combination of the elementary measures sA, sC,
sG and sT.32,46,47 The coefficients of this linear combination can be presented in the form of a
vector m = (mA,mC,mG,mT) which we will call a mapping rule. For example, for RY mapping
rule, we define m = (1,–1,1,–1), and for C mapping rule we define m = (0,1,0,0). Accordingly,
any correlation measure could be expressed as a quadratic form (m · Dm), where D is the
dependence matrix.

Definitely, some of these correlation measures such as CSW are not zero for at least the size
of the isochore i.e., a chromosomal region with high or low C + G content. Isochores have a
typical size of about 105 base pairs, so the correlations would be non-zero for at least r ≈ 105.

A physicist whose goal is to understand some general principles of DNA organization
may attempt to fit the behavior DSW (r) of by a power law function. A mathematical biolo-
gist42,48-50 would rather try to characterize the size distribution of the isochores and their
nucleotide content for various chromosomes and species and try to answer questions of
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132 Power Laws, Scale-Free Networks and Genome Biology

biological relevance rather than to measure some power law exponent, which has an ambigu-
ous biological meaning and characterize isochores in a very indirect fashion.

In general, DNA is known for its complex mosaic structure,23,42 with structural elements
such as isochores, intergenic sequences, CpG islands, LINE(long interspersed elements) and
SINE (short interspersed elements) repeats, genes, exons, introns, and tandem repeats.51,52,53

Each of these structural elements has its different size distribution, nucleotide frequencies, and
laws of molecular evolution, so the correlations in the DNA sequence have very complex struc-
ture, are different for different spices and can not be characterized by a universal power-law
exponent, in a way it is observed in critical phenomena. Correlation studies by their nature
involve averaging over large portions of a sequence, so they have a tendency to gloss over
particular details. This is the main reason why they are not very popular in bioinformatics
whose main tool is the search for sequence similarities54 analogous to finding in an unknown
language some already known words or names, which may shed some light on the meaning of
their neighbors.

Never the less, characterization of correlations in DNA sequences has some intellectual
merit and even practical importance for a biologist whose goal is to understand molecular
evolution of DNA sequences.55 There are several reasonable models of DNA evolution in which
exact power-law correlations emerge.56-59 The values of the exponents of these power laws
depend on the parameters of the model, such as mutation rates and thus can be used to test
certain assumptions of the models. These models are discussed in the three sections starting
with section “Mutation Duplication Model of DNA Evolution”.

Another problem with correlation studies, is that they can be affected by many character-
istics of the system, for example sequence length. In order to avoid many potential pitfalls it is
very important to understand basic properties of correlation measures and fine-tune them on
the well known systems which can serve as golden standards. In the next sections we will
introduce various correlation measures and illustrate their usage, applying them to the Ising
model, whose correlation properties are well known. Again, an impatient reader may proceed
to “Mutation Duplication Model of DNA Evolution”.

Correlation Function
In the next four sections we will describe several methods of correlation analysis. To de-

velop some intuition on their advantages and disadvantages we will apply them to the
one-dimensional and two-dimensional Ising models, whose correlation properties are known
theoretically.

The most straightforward analysis is the direct computation of the correlation function
C(r) defined in Eq. (5). Figure 2 shows the behavior of lnC(r) for the one-dimensional Ising
model consisting of L = 216 spins for several values of T approaching zero. For small values of r,
the graphs are straight lines with the slope equal to the inverse correlation length in complete
agreement with Eq. (17). Figure 3 shows the behavior for the two-dimensional Ising model
consisting of L2 = 28 × 28 spins above and below critical point. Figure 4 presents the corre-
sponding snapshots of the system. The correlation length increases while temperature decreases
toward Tc ≈ 2.27 and then very quickly goes down again, as temperature continues to decrease.

This behavior may seem counterintuitive. Indeed, one can argue that correlations below
Tc are so strong that the majority of spins acquire the same orientation. However, from a
mathematical point of view, the majority of spins, say fraction p, has the same orientation. (In
Fig. 4, T = 2.17, it is positive, but in other simulations, it may appear negative). White patches,
indicating the negative orientation are small, isolated, and randomly distributed in the sample.
These patches of the opposite orientation may be regarded as defects in the crystalline struc-
ture. Thus one can regard two spins at distant positions r and r + k to be two independent
random variables taking value 1 with probability p and value –1 with probability 1 – p.

09Koonin(Buldyrev)PartA 9/16/05, 11:00 AM132



©
20

06
 C

op
yr

ig
ht

Eu
re

ka
h 

/ L
an

de
s 

Bi
os

ci
en

ce

D
o 

N
ot

 D
is

tri
bu

te

Power Law Correlations in DNA Sequences

Figure 2. Logarithms of the correlation functions for the one-dimensional Ising model with L = 216 spins
at three different temperatures T = 1.0 (° ), T = 0.6 (�) and T = 0.5 (◊). The lines are drawn according to
theoretical predictions of Eq. (17).

Figure 3. Logarithms of the correlation functions for the two-dimensional Ising model with L = 28 × 28

spins at five different temperatures  T = 2.97, T = 2.47, T = 2.37, T = Tc = 2.27, and T = 2.17. The straight
horizontal lines show 68% and 95% confidence level for apparent correlations expected to be observed in
an uncorrelated data of this length. Away from critical point, the behavior of correlations is well approxi-
mated by straight lines indicating exponential decay of correlations. The slopes of these lines are inverse
proportional to the correlation length. Close to critical point, correlation length becomes extremely large.
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134 Power Laws, Scale-Free Networks and Genome Biology

Although p >> 1 – p, the average product 〈s(k)s(r + k)〉 of two independent variables s(k) and s(k
+ r) must be equal to the product of their averages 〈s(k)〉〈s(k + r)〉, so the total correlation C(r)
= 0. Note that C(0) = 4p(1 – p), thus correlation function is small even for small r. Indeed, the
graph corresponding to T = 2.17 starts at positions much below the graphs for T ≥ Tc, for
which C(0) = 1, since p = 1/2.

Note that calculations of lnC(r) become very inaccurate as C(r) approaches zero. This is
because the statistical error of calculating the correlation function becomes comparable with its
value. Indeed, simple probabilistic analysis shows that for two independent variables x and y, the
variable (x – 〈x〉)(y – 〈y〉) has variance equal to the product of the variances of the variables x and
y. When we compute correlation function, we average 〈(x – 〈x〉)(y – 〈y〉)〉 ≡ 〈s(k)s(r + k)〉 – 〈s(k)〉〈s(k
+ r)〉 over N = L × L positions. In the best possible case, assuming all these measurements are
independent, the standard error is the square root of variance divided by the square root of N.
Since the variables x ≡ s(k) and y ≡ s(k + r) both have the variance C(0) = 4p(1 – p), where p is the
probability of a positive spin, we get this error σ = 4p(1 – p)/  N . Since for T > Tc the probabili-
ties of positive and negative spins are roughly equal, we have σ = 1/256. The horizontal lines
indicate levels of σ, and 2σ corresponding to 68% and 95% confidence levels. Since in reality x
and y are correlated, the number of independent measurements have to be divided by a factor
proportional to ξd, where d = 2 is the dimensionality. The calculations of C(r) become extremely
inaccurate when we approach the critical point at which the correlation length diverges.

One can see that the values of the correlation function can be well approximated by the
straight lines above the estimated standard error level, except for T = 2.27 and T = 2.37, when

Figure 4. Snapshots of the Ising model far above the critical point T = 2.97, close to the critical point T =
2.37, at the critical point T = 2.27, and below the critical point T = 2.17. One can see that the patch sizes
are the largest at the critical point.
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Power Law Correlations in DNA Sequences

the graphs start to bend upward as r decreases. This behavior may indicate a power law decay.
To see this more clearly, we simulate a much larger system L = 1024 exactly at Tc. Figure 5A
shows the behavior of correlation function on a double logarithmic plot. For small r the graph
is approximately linear with slope –0.25 in agreement with the exact result for an infinite
system C(r) = r–1/4/  2 .17 However, one can see that the deviations rapidly increase with r and
the agreement breaks down at about r = 10. Analyzing such a data, one can easily dismiss the
possibility of power law correlations on the basis that their range is so small. In fact, this early
deviation from the power law can be well explained by the finite size of the system L = 1024.
Indeed, in a finite system, the correlation length cannot be larger than the radius of the system.
In Figure 5B, we show that the correlation function can be well approximated by C(r) ≈ r–1/4

exp(–r/ξ)/  2 , where ξ have different values comparable with the system radius ≈ 512. This
example demonstrates difficulties associated with correct identification of power law correla-
tions in a finite system.

It is illuminating to study also the anti-ferromagnetic Ising model, in which neighboring
spins prefer to stay in the opposite direction, or be anti-correlated. At low temperatures, an
anti-ferromagnetic system looks like a checker board. Mathematically, ferromagnetic and
anti-ferromagnetic Ising models are identical, so that any configuration of the anti-ferromagnetic
model corresponds to exactly one configuration of the ferromagnetic model which can be
obtained by flipping all the spins according to a simple deterministic rule. Thus in both mod-
els, correlation length has the same finite value at any temperature, except at the critical point
at which the correlation length in both models diverges. Nevertheless, the behaviors of correla-
tion functions are totally different. In the anti-ferromagnetic case, correlation function is nega-
tive for all odd r and is positive for all even r (Fig. 6A.)

For T > Tc, the behavior of the absolute value of the correlation function is similar to that
of the ferromagnetic model, both decaying exponentially with r, but below Tc in the
anti-ferromagnetic case, the absolute values of correlations do not decay at all (Fig. 6B). How-
ever, if one average odd and even values of the correlation function, this averaged correlation
function decays exponentially to zero as expected. This shows that the correlation length is
finite and that there is no true long range correlations.

A B

Figure 5. A) Double logarithmic plot of the correlation functions for the two-dimensional Ising model with
L = 210 × 210 spins at critical temperature T = Tc = 2.296 for two realizations of the ferromagnetic model
(dash and dotted lines) and the antiferromagnetic model (bold line). The straight line indicates theoretical
fit C(r) ~ r–1/4/  2 . B) Logarithm of correlation function, multiplied by r1/4   2 . The linearity of the graph
demonstrates exponential behavior of the corrected correlation function. The inverse slopes give values  ξ
= 400, ξ = 270, ξ = 220 comparable to half of the system size L/2 = 512.
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136 Power Laws, Scale-Free Networks and Genome Biology

The behavior of the anti-ferromagnetic model below critical temperature is similar to the
behavior of coding sequences in DNA, which have a fixed reading frame43 (see section “Models
of Long Range Anti-Correlations’). For a totally uncorrelated sequence of codons in which
codon frequencies are taken from real codon usage tables (i.e., no true long range correlations),
certain correlation functions oscillate with period 3 with a fixed amplitude till the end of the
reading frame. However, after averaging three successive values C(r) + C(r + 1) + C(r + 2), the
apparent correlations disappear.

Fourier Power Spectrum
In addition to large statistical errors in computation of C(r), these calculations are also

very slow, since the amount of operations is proportional to r × N, where N is total number of
points in the sample. An alternative way to study the correlations is to compute a power spec-
trum S(f ) which is the square of the absolute value of the Fourier transform of the function
s(k). This technique goes back to X-ray crystallography, in which the intensity of scattered X-
rays at certain angle, appears to be a Fourier transform of the density correlation function in
the sample under study.60 It may also help to understand the Fourier transform technique in
terms of a musical record. Imagine that s(k) is a record of a melody. Now k is a continuum
variable playing the role of time. Then S(f ) tells how much energy is carried by frequency
(pitch) f . Unfortunately, applications of Fourier transform technique require substantial knowl-
edge in mathematics involving complex numbers and trigonometry. In the following section,
we give a brief review of the properties of Fourier transforms. Throughout this section we will
use standard notations i ≡   −1  for imaginary unity and π = 3.14159... . To simplify notations,
we will also introduce an angular frequency ω = 2πf.

Mathematically, the Fourier transform61 of an infinitely long record is a result of an inte-
gral operator F acting on the function s(x):

      
˜ cos sin .s s e s x dx x s x dx i x s x dxixω ω ω ωω( ) = ( ) = ( ) ≡ ( ) ( ) + ( ) ( )−∞

∞

−∞

∞

−∞

∞
∫ ∫ ∫F (21)

Since i is the imaginary unity, the result of a Fourier transform is a complex function     ̃s (ω)
= a(f) + ib(ω). The power spectrum S(ω) is defined as the square of the absolute value of the
Fourier transform: S(ω) ≡ |    ̃s (ω)|2 ≡     ̃s (ω)  s (ω), where   s (ω) = a(ω) – ib(ω) is a complex
conjugate of     ̃s (ω). The signal s(x) can be restored from     ̃s (ω) by the inverse Fourier transform

      
s x s e s dix( ) = ( ) = ( )− −

−∞

∞
∫F 1 1

2
˜ ˜ .ω

π
ω ωω (22)

A B

Figure 6. A) Correlation function for the two-dimensional anti-ferromagnetic Ising model. B) Absolute
values of the correlation function below Tc (solid line), at Tc (dotted line) and above Tc, (dashed line).
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Power Law Correlations in DNA Sequences

Fourier transforms have many interesting functional properties which make them a useful
tool in data analysis. For example, Fds(x)/dx = –iω    ̃s (ω) and F  

x
∫ s(x)dx = i    ̃s (ω)/ω. An impor-

tant property of the Fourier transform is to turn a convolution of two functions into a product
of their Fourier transforms:

      
F F Fs x s x r dx s s1 2 1 2−∞

∞
∫ ( ) +( ) = ( ) −( )ω ω . (23)

Due to this property, the power spectrum of a function with zero average is equal to the
Fourier transform of its autocorrelation function.

    S C rω( ) = ( )F (24)

For example, if the correlations decay exponentially with correlation length ξ as for the
one-dimensional Ising model or a one-step Markovian process, C(r) = C(0)exp(–r/ξ), we have

    
S Cω ξ ω ξ( ) = ( ) +( )2 0 1 2 2/ , (25)

so the power spectrum is almost constant for low frequencies ω < 1/ξ and decays as 1/ω2 for
high frequencies ω >> 1/ξ.

If the correlations decay as a power law (as at the critical point), C(r) = |r|–γ, where 0 < γ <
1, the power spectrum also decays as a power law S(ω) = c(γ)ω–β, where

  β γ= −1 , (26)

and c(γ) = 2cos[
  

π
2 (1 – γ)]Γ(1 – γ) does not depend on f . Here Γ is Euler’s gamma-function.61

The case of approximately constant power spectrum is called white noise, since in this case
all the frequencies carry the same energy (as in white light which is mixture of the colors of the
rainbow corresponding to all different frequencies). The case S(f ) ~ 1/f 2 is nicknamed “brown”
noise since it describes Brownian motion and the case S(f ) ~ 1/f  is called 1/f -noise or “red”
noise. The case S(f ) ~ 1/f β, with 0 < β < 1corresponds to long range power-law correlations in
the signal and is often called fractal noise. The power spectrum of the fractal noise looks like a
straight line with slope –β on a log-log plot.

In case of long range anti-correlations (as in the anti-ferromagnetic Ising model, Fig. 6)
the correlation function oscillates with certain angular frequency ω0. In this case, the behavior
of the correlation function can be modeled as C(r) ~ |r|–γ cos(ωr). Analogous calculations61

lead to S(ω) = c(γ)(|ω0 – ω|–β + |ω0 + ω|–β)/2. This expression is analytical at ω = 0, but it has
power law singularities at ω = ±ω0. Thus in case of anti-correlations, the graph of power spec-
trum does not look like a straight line on a simple log-log plot. One must plot lnP(ω) versus
ln|ω0 –ω| in order to see a straight line with the slope –β.

If the correlation function decays for r → ∞ faster than r–1, its Fourier transform must be
a continuous function limited for f → ∞ and, therefore, cannot have singularity at any f. The
log-log graph of such a function plotted against f – f0 has zero slope in the limit ln| f – f0| → ±
∞, so one can conclude that β = 0 if γ > 1. If γ = 1, the Fourier transform may have logarithmic
singularities, which also corresponds to zero slope β = 0.

Discrete Fourier Transform
In reality, however, we never deal with infinitely long time series. Usually we have a system

of N equidistant measurements. In this case, a sequence of N measurements s(k), k = 0,1,...N –
1, can be regarded as vector s of the N-dimensional space. Accordingly, one can define a dis-
crete Fourier transform,62,63 of this vector not as an integral but as a sum

      
˜ ,/s Fs≡ = ( )

=

−

∑ s k e ikq N

k

N
2

0

1
π (27)
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138 Power Laws, Scale-Free Networks and Genome Biology

which can also be regarded as a vector in N-dimensional space with components     ̃s (q), q =
0,1,...N – 1. The fractional quantity f = q/N plays the role of frequency. As one can see, the
discrete Fourier transform can be expressed in a matrix form     ̃s  = Fs, where F is the matrix with
elements fkq = exp(2πikq/N ). Analogously, vector s can be restored by applying an inverse
Fourier transform:

      

s F s≡ = ( )− −

=

−

∑1 2

0

11˜ ˜ ./

N
s q e ikq N

q

N
π (28)

If one assumes that the sequence s(k) is periodic, i.e., s(k + N) = s(k), then the square of the
discrete Fourier transform is proportional to the discrete Fourier transform of the correlation
function as in case of the continuum Fourier transform.62,63 Indeed, |    ̃s (f )|2 = F    k

N
=
−∑ 0

1 s(k)s(k + r).
It is natural to define the discrete power spectrum S(f ) to be exactly equal to the

Fourier transform of the correlation function. Since the correlation function is defined as
C(r) = 1/N    k

N
=
−∑ 0

1
s(k)s(k + r) – 〈s〉2, which involves division by N and subtraction of the

average value, S(f ) ≡ |    ̃s (f )|2/N for f > 0 and S(0) = 0, because     ̃s (0) ≡ N〈s(k)〉.
The correlation function can be thus obtained as an inverse discrete Fourier transform of

a power spectrum. Since frequencies –q/N and 1–q/N are equivalent (due to 2π – periodicity of
sines and cosines) and, for real signal,     ̃s (–f ) and     ̃s (f ) are complex conjugates, the values S(q/
N) and S(1 – q/N) are equal to each other, so we can compute power spectra only up to the
highest frequency q/N  = 1/2.

If N is a natural power of two, N = 2n, the discrete Fourier transform can be computed by
a very efficient algorithm known as the Fast Fourier Transform (FFT).62,63 The amount of
operations in this algorithm grows linearly with N. This makes FFT a standard tool to analyze
correlation properties of the time series.

Since the sequences we study are formed by random variables, the power spectra of such
sequences are random variables themselves. Before proceeding further, it is important to calcu-
late the power spectrum of a completely uncorrelated sequence of length N. As we have seen in
section “Correlation Function”, C(0) > 0 has the meaning of the average square amplitude
(variance) of the original signal, while for r > 0, the values of C(r) are Gaussian random vari-
ables with zero mean and standard deviation equal to C(0)/  N . Analogous conclusions can
be made for S(f ). According to the central limit theorem,21 the sum of N random uncorrelated
variables s(k)exp(2iπkf ) converges to a Gaussian distribution with mean equal to the sum of
means and variance equal to the sum of variances of individual terms. Thus, we can conclude
(after some algebra) that all S(f ) are identically distributed independent random variables with
an exponential probability density P(S(f )) = 1/[C(0)]exp[–S(f )/C(0)]. So the power spectrum
of an uncorrected sequence has an extremely noisy graph. To reduce the noise one can average
power spectra for many sequences, and the average value of the power spectrum will converge
to a horizontal line 〈S(f )〉 = C(0) which is called the white noise level. An equivalent method is
to average the values S(f ) for k neighboring frequencies f, f + 1/N, f + 2/N,..., f +k/N. Note that
〈S(f )〉 is equal to the Fourier transform of  〈C(r)〉, directly computed using Eq.(27), since as we
see above, 〈C(r)〉 = 0 for r ≠ 0.

In the following, we will illustrate the usage of FFT computing power spectrum for a one-
and two-dimensional Ising models near critical points.

Figure 7 shows the power spectrum for the one-dimensional Ising model consisting of L =
216 spins for T = 0.5 (ξ = 27.3), T = 0.6 (ξ = 14.01), T = 1.0 (ξ = 3.67). The power spectrum
of the entire system for N = L is very noisy so we show the running averages of the original data
using window of 32 adjacent frequencies (gray fluctuating curves). The averages of 32 power
spectra computed for 32 non-overlapping windows each of size N = 211 produce a very similar
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Power Law Correlations in DNA Sequences

graph (not shown). The smooth bold lines represent exact discrete Fourier transform of the
correlation function computed using Eqs. (4), (17) and (27)

    

S f
f f

( ) =
−

+ − ( )
≈

+ ( )
1

1 2 2

2

1 2

2

2 2

λ

λ λ π

ξ

πξcos
, (29)

where λ = 2p – 1 = exp(–1/ξ). These analytical results give excellent agreement with the
numerical data. One way to estimate the correlation length is to measure a limit of S(f ) for
f → 0. This quantity can be applied to detect a characteristic patch size in the DNA sequence
(see sections “Alternation of Nucleotide Frequencies” and “Models of Long Range
Anti-Correlations”). Another, more accurate method60 is to plot the inverse power spectrum
1/S(f ) versus f 2 (Fig. 7B) and to measure the slope of this graph for f 2 → 0. Indeed, accord-
ing to Eq.(29), this slope is equal to 2ξπ2. These two methods give consistent results for
exponentially decaying correlations, but technically speaking they measure two different prop-
erties of the power spectrum. In fact, the latter method gives the so called Debye persistence
length R2 ~ 

  0

∞
∫ C(r)r2dr, which is not the same as correlation length ξ, but is proportional to

ξ for exponentially decreasing correlations, C(r) ~ exp(–r/ξ).
Figure 8A shows the power spectrum for a two-dimensional Ising model on a L × L = 210

× 210 square lattice computed averaging power spectra for L horizontal rows each consisting of
N = L = 210 points. The figure shows a remarkable straight line indicating long range power law
correlations. However, the slope of the line β = 0.86 corresponds to γ = 0.14 which is almost
two times smaller than the theoretical exact value γ = η = 0.25. The discrepancy shows that the
power spectrum analysis of the finite system may often give inaccurate values of the correlation
exponents.

Figure 8B shows a log-log plot of the power spectrum for a two-dimensional anti-ferro-
magnetic Ising model, plotted versus 1/2 – f. The analysis in the previous section shows that
since 1/2 is the frequency of the anti-ferromagnetic correlations, the power spectrum must
have a power-law singularity in this point. Indeed, the graph gives an approximately straight
line with slope –β = –0.84 similar to the case of ferromagnetic interactions.

A B

Figure 7.  A) Power Spectrum of the one-dimensional Ising model with L = 216 spins for T = 0.5 (ξ = 27.3),
T = 0.6 (ξ = 14.0), and T = 1.0 (ξ = 3.67). Smooth lines show analytical result Eq. (29). B) Inverse power
spectrum of the same data plotted versus f 2. The slopes at f 2 = 0 are proportional to the values of the
correlation length.
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140 Power Laws, Scale-Free Networks and Genome Biology

Detrended Fluctuation Analysis (DFA)
A somewhat more intuitive way to study correlations was proposed in the studies of the

fluctuations of environmental records by Hurst in 1964.7 This method is especially useful for
short records. The idea is based on comparison of the behavior of the standard deviation of the
record averaged over increasing periods of time with the analogous behavior for an uncorrelated
record. According to the law of large numbers, the standard deviation of the averaged uncorrelated
time series must decrease as the square root of the number of measurements in the averaging
interval. This method naturally emerges when the goal is to determine an average value of a
quantity (e.g., magnetization in the Ising model, or concentration of a certain nucleotide type
in a DNA sequence) obtained in many successive measurements and to asses an error bar of
this averaged value. Since the average is equal to the sum divided by the number of measure-
ments, the same analysis can be performed in terms of the sum. In addition to its analytical
merits, this method provides a useful graphical description of a time series which otherwise is
difficult to see due to high frequency fluctuations.

A variant of Hurst analysis was developed in reference 64 under the name of detrended
fluctuation analysis (DFA). The DFA method comprises the following steps:

1. For a numerical sequence s(k), k = 1,2,...L compute a running sum:

      

    
y n s k

k

n

( ) ≡ ( )
=
∑

1
, (30)

which can be represented graphically as a one dimensional landscape, (see Fig. 9A).
2. For any sliding observation box of length r which includes r + 1 values y(k),y(k + 1),...y(k + r)

define a linear function yk(x) = ak +bkx which provides the least square fit for these values, i.e.,
ak and bk are such that the sum of r + 1 squares

     
    
F r y n y nk k

n k

k r
2 2( ) = ( ) − ( )[ ]

=

+

∑ (31)

has a minimal possible value 
    
Fk ,min

2 (r). Note that bk has the meaning of the average value
〈s(k)〉 for this observation box, which is the local trend of the values y(k). For a non-stationary
sequence, the local average values 〈s(k)〉 can change with time. Since these trends are sub-
tracted in each observation box, this analysis is called detrended. Note that 

    
Fk ,min

2 (1) ≡ 0, so
it is a trivial value which can be excluded from the analysis.

A B

Figure 8. A) Power spectrum of the 210 × 210 Ising model at the critical point. The slope of the straight
line gives β = 0.86. B) Power spectrum of the 210 × 210 anti-ferromagnetic Ising model at the critical point
plotted versus 1/2 – f. The slope of the straight line gives β = 0.84.
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Power Law Correlations in DNA Sequences 141

3. For r > 1, compute the average value of 
    
Fk ,min

2 (r) from k = 1 to k = L – r and define the
deternded fluctuation function as

     

    
F r

L r r
F rD k

k

L r
2

1

1

1 1
( ) ≡

− +( ) −( ) ( )
=

−

∑ ,min . (32)

It can be shown, that for a long enough sequence L → ∞ of uncorrelated values s(k) (i.e.,
C(r) = 0 for r > 1) with finite mean and variance C(0), we must have     FD

2 (r) → (r + 3)C(0)/
15. Thus the graph of FD(r) for such a sequence on a log-log plot is a straight line with slope
the α = 1/2 if plotted versus r + 3. Any deviation from the straight line behavior indicates
the presence of correlations or anti-correlations. It can be also shown that for a sequence
with long range power law correlations C(r) ~ r–γ for 0 < γ < 1, the detrended fluctuation
also grows as a power law FD(r) ~ rα as r → ∞, where

       α γ= − >1 2 1 2/ / , (33)

is called the Hurst exponent of the time series.

A Relation between DFA and Power Spectrum
There are many different ways to subtract local trends in Eq. (31).65 One can subtract

polynomials of various powers or linear combinations of sines and cosines of certain frequency
instead of linear functions. All these different types of DFA have certain advantages and disad-
vantages. One way to subtract local trends is first to subtract a global trend and plot a sequence

Figure 9. A) Low frequency Fourier approximation of the same landscape. All the frequencies f  > 1/r are
removed. Fourier DFA computes the average square deviation of this approximation from the landscape.
B) The detrended landscape yD(n) for the one-dimensional Ising model. Straight lines show least square
linear fits obtained for different windows of size r = 512. Linear DFA computes the average square deviation
of these fits from the landscape.
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142 Power Laws, Scale-Free Networks and Genome Biology

yD(k) ≡ y(k) – ky(L)/L. Next, compute a discrete Fourier transform with N = L of this function

    ̃y (f ) ∞ FyD and subtract from the function yD(k) a low frequency approximation

    
y k L y f ifkr f r( ) = ( ) −( )<∑1 21/ ˜ exp ,| | / π

(see Fig. 9B). A visual comparison of Figure 9A,B, suggests that these two procedures of sub-
tracting local trends are equivalent. Thus we can define a Fourier detrended fluctuation as

    
F r

L
y k y kDF D r

k

L
2 2

1

1( ) ≡ ( ) − ( )[ ]
=
∑ . (34)

According to Eq. (28), the residuals in the right hand side of Eq. (34) are equal to the high
frequency part of the inverse Fourier transform:

    
y k y k L y f ifkD r f r( ) − ( ) = ( ) −( )≥∑1 21/ ˜ exp .| | / π

The Fourier basis vectors are mutually orthogonal, i.e.,     k
L

=∑ 1exp(2πiqk/L)exp(–2πiqk/L) =
Lδpq, where δpq = 1 if p = q and δpq = 0, otherwise. Thus, according to the L-dimensional analogy
of the Pythagorean theorem, the square of the vector yD(k) – yr(k) is equal to the sum of the
squares of its orthogonal components and therefore,

    

F r L y f L S fDF
f r

y
f r

2 2 2

1

1 2

1

1 2
1 1( ) = ( ) = ( )

≥ ≥
∑ ∑/ ˜ / .

| | /

/

| | /

/
(35)

The latter sum is nothing but the sum of all the high frequency components of the power
spectrum Sy(f) of the integrated signal.

Equation (35) allows us to derive the relation (33) between the exponents α and γ. Indeed,
in continuum limit, this sum corresponds to the integral f r=

∞
∫ 1/ Sy(f )df ~ f r=

∞
∫ 1/ S(f )f –2df, where

S(f ) is the power spectrum of the original, non-integrated sequence s(x) and the factor f –2 comes
from the fact that the Fourier transform of the integrated sequence is proportional to the Fourier
transform of the original sequence divided by f . As we see above (26), in case of power law
correlations with exponent γ, we have S(f ) ~ f γ–1. Thus

    
F r S f df S f f df r rDF yf r f r

2
1

2
1

1 2 1 21( ) ( ) ( ) ( ) =
=

∞ −
=

∞ − − + −∫ ∫~ ~ ~ /
/ /

γ γ

If we assume that FDF(r) ~ FD(r) = rα as visual inspection of Figure 9 suggests, we have
α = 1 – γ/2.

Figure 10A shows linear DFA and Fourier DFA for a one-dimensional Ising model on a
double logarithmic plot. These two methods are graphically introduced in Figure 9. One can
see a sharp transition from the correlated behavior for r ≈ ξ with slope α(r) > 1 to an uncorrelated
behavior for r >> ξ with slope α(r) ≈ 1/2. The change of the slope can be also studied by
plotting the local slope α(r) versus r (Fig. 10B). This graph shows that Fourier DFA can detect
the correlation length more accurately than the linear DFA.

Figure 11 shows analogous plots for the two-dimensional Ising model with long range
correlations γ = 1/4. One can see again that the Fourier DFA is more accurate in finding the
correct value of the exponent α = 1 – γ/2 = 0.875 than linear DFA.

In summary, we introduce three methods to study correlations: autocorrelation function
C(r), power spectrum S(f ), and DFA or Hurst analysis FD(r). For a signal with long range
power law correlations γ < 1, all three quantities behave as power law:

    

C r r

S f f

F r r

r

f

rD

( )
( )

( )

→ ∞

→

→ ∞

−

−

~

~

~

γ

β

α

   0 (36)
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Power Law Correlations in DNA Sequences 143

where the exponents α, β, and γ are related via the following linear relations:

  

β γ

α γ

α β

= −

= −

= +( )

1

1 2

1 2

/

/ .

(37)

If γ > 1, the exponents β = 0, α = 1/2 are the same as for a short range correlated sequence
with finite correlation length ξ.

A B

Figure 10. A) Linear detrended fluctuation (° ) and Fourier detrended fluctuation (�) of the one dimen-
sional Ising model for (T = 0.6, L = 216). The slopes of linear fits give local values of α = 1.24 (thin line) and
α = 1.38 (bold line) for small r ≈ ξ = 14 and α = 0.42 (thin line), α = 0.47 (bold line) for uncorrelated regime
r >> ξ. B) The slope α(r) of the detrended fluctuations as function of r. Note that Fourier DFA gives a strong
maximum at r = 2ξ while linear DFA shows monotonic decay of α.

Figure 11. Linear detrended fluctuation (° ) and Fourier detrended fluctuation (�) of the two dimensional
Ising model for (T = Tc. L = 210). The slopes of linear fits give local values of α = 0.95 (thin line) and α =
0.88 (bold line) for small r < L. The steep jump in Fourier DFA at L = 210, indicates quasi-periodicity with
period L = 210 due to the “bagel” geometry of the model.
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144 Power Laws, Scale-Free Networks and Genome Biology

Duplication-Mutation Model of DNA Evolution
In 1991, W. Li proposed a duplication-mutation model of DNA evolution which pre-

dicted long-range power law correlations among nucleotides.56 As we see above, in a one di-
mensional system with finite range interactions, correlations must decay exponentially with
distance. So in order to produce a power law decay of correlations, one must assume long-range
interactions among nucleotides. In the model of W. Li, such interactions are provided by the
fact that the time axes serves as an additional spatial dimension which connects distant seg-
ments of DNA developed from a single ancestor. The model is based on two assumptions both
of which are well biologically motivated:

1. Every nucleotide can mutate with certain probability.
2. Every nucleotide can be duplicated or deleted with certain probability.
First phenomenon is known as point mutation which can be caused by random chemical

reactions such as methylation.51 Second phenomenon often happens in the process of cell
division (mitosis and meiosis) when pairs of sister chromosomes exchange segments of their
DNA (genetic crossover). If the exchanging segments are of identical length the duplication
does not happen. However, if two segments differ in length by n nucleotides, the chromosome
that acquires larger segment obtains an extra sequence of length n which is identical to its
neighbor, while another chromosome loses this sequence. In many cases, duplications can be
more evolutionary advantageous than deletions. This process leads to creation of large families
of genes developed from the same ancestor. For simplicity we will start with a model similar to
the original model of Li56 which neglects deletions and deals only with duplication of a single
nucleotide (n = 1). Next, we will discuss the implications of deletions. Schematically, this model
can be illustrated by Figure 12. For simplicity, we assume only two types of nucleotides X and
Y (say purine vs. pyrimidine or A vs. not A). Each level of the tree-like structure represents one
step of the evolutionary process during which every nucleotide duplicates, a nucleotide X can
mutate with probability pY into Y, and a nucleotide Y can mutate with probability pX into X.
This model can be illustrated by a “family” tree in which every nucleotide is connected to its
parent in the previous generation and eventually to a single ancestor at the root of the tree.

After k duplication steps, this process will lead to a sequence of total 2k nucleotides. The
frequencies of nucleotides X and Y in this sequence can be computed using the theory of
Markovian processes. Indeed, the sequence of mutations along any brunch of the tree connect-

Figure 12. Mutation duplication model of W. Li.56 At each time step, nucleotides or genes X and Y
duplicate and may mutate with probability PX + PY ≈ 1/12. Mutations are indicated by dashed lines. The
correlations can spread along solid lines. Thus nucleotides that are far away along the chain are still closely
correlated since they descend from the same ancestor. The above values of mutation probabilities corre-
spond to the long range power-law correlations with γ = 0.25.
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Power Law Correlations in DNA Sequences 145

ing a nucleotide to a single ancestor can be regarded as a one-step Markovian process with a
matrix of transition probabilities

      
P =

−

−

⎛

⎝
⎜

⎞

⎠
⎟

1

1

p p

p p
Y X

Y X
. (38)

Simple calculations of the eigenvector corresponding to the largest eigenvalue λ = 1 de-
scribed in section “Markovian Processes” gives the frequencies of nucleotides X and Y after
many steps: f X = pX/(pX + pY) and fY = pY/(pX + pY). In addition, Markovian analysis predicts
that all dependence coefficients along any branch of the tree decay as     λ2

k , where k is number of
generations, and λ2 = 1 – pX – pY is the second largest eigenvalue.

Let us compute the dependence coefficients between two nucleotides which are at dis-
tance r from each other in the resulting sequence. The reason of why the correlations are now
long-range is obvious. Indeed, the nucleotides which are r = 2k' apart from each other in space
are only 2k' apart from each other in time, since they are both descendants of one common
ancestor k' = log2r generations before. As we see above, the correlations decay exponentially
with k' and hence as a power law with r. After some elementary algebra, we get that all depen-
dence coefficients DXX, DXY, DYX, and DYY decay as power law

    D r r( ) −~ γ (39)

where

γ = −
+ −2 1

2

ln

ln
.

p pX Y (40)

If the deletions may occur with some probability Pd < 1/2, the number of descendants of
one common ancestor grows as zk' where z = 2(1 – Pd) and k' is the number of generations.
Thus, replacing ln2 by lnz in the denominator of the expression for (40), we get

    
γ = −

+ −

−( )
2 1

2 1

ln

ln
.

p p

p
X Y

d

(41)

The true long range correlations correspond to the case γ < 1, or (pX + pY – 1)2(1 – pd) > 1/
2, which means that the mutation rates must be very small: pX + pY ≈ 0 or alternatively very
large: pX + pY ≈ 2, while the deletion rate must be small. This simple example shows that the
exponent of the power law crucially depends on the parameters of the model. In real DNA
sequences, the duplication unit is rather a gene or a part of a gene coding for a protein domain.
One can generalize this model assuming that coding sequences X and Y can duplicate, and
with some probability jump from place to place effectively mimicking mutations X to Y and Y
to X in the above scheme. One can also introduce various point mutation rates for nucleotides
in the sequences X and Y. These alternations may change the formula for γ, but the model will
still produce power law decaying correlations D(r) ~ (r/〈n〉)–γ, where 〈n〉 is the average length of
sequences X and Y. The problem with the application of this model to a real situation is that the
model has many parameters, describing point mutations, duplications and deletions, while
resulting in a single observable parameter γ.

Alternation of Nucleotide Frequencies
Let us assume that a nucleotide sequence consists of two types of patches,57 in one of

which the frequency of nucleotide X is f X1 while in the other it is f X2. The patches can alternate
at random, so that after a patch of type 1 a patch of type 2 can follow with probability 1/2 and
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146 Power Laws, Scale-Free Networks and Genome Biology

vice versa. Let us assume that the lengths of these patches l are distributed according to the
same probability distribution P(l).

The motivation for this model could be the insertion of transposable elements,53,66 e.g.,
LINEs and SINEs into the opposite strands of the DNA molecule. It is known that LINE-1
sequence has 59% purines (A,G) and 41% pyrimidines (T,C).66-68 Obviously, due to A-T and
C-G complementarity, if LINE-1 is inserted into the opposite strand, it will have 41% purines
and 59% pyrimidines (see Fig. 13).

Of course, much more complex models with many parameters can be introduced. These
types of models are similar to hidden Markov processes.16,69 However we will study only the
above simple case in order to understand under which conditions this model can lead to power-
law correlations.

Let us compute the correlation function for this model. Obviously, the average fre-
quency of a nucleotide in the entire sequence is fX = (fX1 + fX2)/2, so if both nucleotides k and
k + r belong to the same patch their correlation DXX(r) will be     f fX X1

2 2−  if it is a patch of type
1 or     f fX X2

2 2−  otherwise. Since both events have the same probability 1/2, the overall corre-
lation 

    
D r f f r r f fxx X X X X( ) = +( )∏( ) = ∏( ) −( )1

2
2

2
1 2

2
2 2 4/ / / , where

    
∏( ) = +( ) ( )

=

∞

=

∞

∑ ∑r P r l l P l l
l l

/
1 1

(42)

is the probability that a randomly chosen pair of nucleotides at distance r belongs to the same
patch.

If the distribution of patch sizes is exponential P(l) = λl–1(1 – λ), the overall correlation is
easy to compute using summation of geometric series DXX(r) = (fX1 – fX2)2λr/4, which decays
exponentially with r. However, this correlation can be extremely small comparatively to the

Figure 13. Purine-pyrimidine landscape representation (excess of purines over pyrimidines) of the human
beta globin chromosomal region (GenBank accession HUMHBB) of the total length L = 73,308. The
overall frequency of purines (50.27%) is almost equal to the frequency of pyrimidines (49.73%). HUMHBB
contains a KpnI repeat from position 67071 to position 73195. This region is very purine rich with
58.57% of purines. KpnI repeat belongs to the LINE1 family of repetitive elements. A region from
23,137 to 29,515 is very purine poor (41.43%). It contains 3 segments of LINE1 repetitive elements
inserted into the opposite DNA strand, so that all purines are exchanged with pyrimidines.
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Power Law Correlations in DNA Sequences 147

“white noise level” DXX(0) = fX(1 – fX), and thus can be very difficult to detect. For example, if
f X1 = 0.3 and f X1 = 0.2 DXX(0) = 3/16, while DXX(1) = λ/400, which is almost 100 times smaller
even for very large λ → 1.

If we have the distribution of patch sizes decaying for l → ∞ as a power law

    P l l( ) −~ ,µ (43)

where µ > 2, one can show that ∏(r) ~ r2–µ. This can be easily seen if one approximates summa-
tion by integration in the expression (42) for ∏(r). Thus, in this case the correlations are indeed
power law with

  γ µ= − 2. (44)

For µ > 3, we have γ > 1 and the power spectrum of the model is finite for f → 0,
which means β = 0, α = 1/2. The value 

    
lim ~ /
f l lS f l P l lP l
→ =

∞
=
∞( ) ( ) ( )∑ ∑

0

2
1 1  has the meaning

of the weighted average patch length, i.e., the average length of the patch containing a
randomly selected base pair.

The case 2 < µ < 3 is equivalent to the behavior of the displacement in the so called Lévy
walks,70,71 i.e., walks in which distribution of step lengths are taken from a power law with
exponent µ. In this case, β = 3 – µ, α = 2 – µ/2.

If µ ≤ 2, the sums in (42) do not converge, this means that summation in Eq. (42) must
be taken up to the largest l ≈ L, where L is the total sequence length. Thus ∏(r) ~ (L – r)/L =
1 – r/L and we can assume γ = 0, β = 1, α = 1.

Figure 14A shows the behavior of the correlation function of a sequence for which pX1

= 0.3, pX2 = 0.2 and P(l) = l–3/2 – (l + 1)–3/2, corresponding to µ = 2.5. In this case ∏(r) =

    l l rl r l
−

= +
∞ −

=
∞ −∑ ∑3 2

1
3 2

1
0 5/ / ./ ~ . We present the results of correlation analysis for a very long

sequence of L = 223 ≈ 8·106. One can see good agreement with Eq. (44). For a short se-
quence, L = 213 = 8192, there is no agreement: the correlations sink below random fluctua-
tions, whose amplitude is equal to C(0)/  L . This means that the sequence must be very
long so that the long range correlations can be seen on top of random noise.

Figure 14B shows the power spectrum for the case of N = L = 223 obtained by averaging
power spectra for 2048 non-overlapping windows of size N = 4096. The power spectrum is
almost flat corresponding to the white noise level C(0) = 3/16. If the white noise level is sub-
tracted, the long-range correlations become apparent (Fig. 14C). Indeed the graph of |S(f ) –
C(0)| on a log-log scale is a perfect straight line with slope –0.57 in a good agreement with the
theoretical prediction. The DFA method gives exponent α(r) monotonically increasing from
an uncorrelated value 0.5 for small  r to α = 1 – γ/2 = 0.75 for large r. Similar situation is
observed in coding DNA, in which the long range correlations may exist but are weak com-
paratively to the white noise level. These correlations are limited to the third nucleotide in each
codon72 and can be detected if the white noise level is subtracted.

If the length of the largest patch is comparable with the length of the entire sequence as in
case µ ≤ 2, β = 1, the global average frequency fX of a nucleotide cannot be accurately deter-
mined no matter how large is the entire sequence length. The average frequency we obtain will
be always the frequency of the largest patch. This behavior known as non-stationarity is ob-
served in many natural systems in which different parts are formed under different conditions.
Non-stationarity makes the correct subtraction of the white noise level problematic, since its
calculation involves estimation of C(0) ~ f X(1 – f X ), which depends on fX.

Applying subtraction of the white noise level procedure, Richard Voss34,35 found that
both coding and noncoding DNA sequences from any organism, have exponent β ≈ 1, corre-
sponding to the 1/f noise. Note that β = 1 is exactly the case when this procedure is not quite
reliable. Earlier73 he applied the same type of analysis to the music of different composers from
J.-S. Bach to the Beatles and showed that all their music is just 1/f noise! No matter how
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148 Power Laws, Scale-Free Networks and Genome Biology

intriguing this observation might seem, the explanation is somewhat trivial. The case µ < 2, (β
= 1) i.e., the case when the length of the largest patch is comparable with the entire sequence
length is indeed likely to be true for music as well as for DNA. In music, fast pieces follow slow
pieces, while in DNA, CG rich isochores follow CG poor ones.

It is interesting to note that similar long range correlations with exponent α = 0.57 have
been found in human writings.74,75 These correlations can be explained by the changes in local
frequenies of letters caused by changes in the narrative which excessively uses the names of
currently active characters.

In DNA, these patches may represent different structural elements of 3D chromosome
organization, e.g., the DNA double helix with period 10.5 bp,76 nucleosomes about 200 bp
long,76 30 nm fiber, looped domains of about 105 bp, and chromatin bands or isochores72,77

that may consist of several million nucleotides. Such hierarchical structure of several length-
scales may produce effective long-range power law correlations. In fact,78,79 it is enough to have
three discrete sizes r = 100, r = 1000 and r = 10000 of these patches in the distribution ∏(r) in
order to get a sufficiently straight double logarithmic plot of the power spectrum over three
decades in the frequency range.

A B

C D

Figure 14. A) Correlation functions for the Lévy walk model for a long L = 223 and a short L = 213 sequences.
The lower and upper horizontal lines show random noise levels for the long and short sequences, respec-
tively. B) The power spectrum for the long sequence. The spectrum is almost flat indicating that long-range
correlations are small comparatively to the white noise level. Effective exponent β = 0.12 is very small. C)
After the white noise level is subtracted, the power spectrum shows long-range correlations with exponent
β = 0.57. D) The effective exponent α(r) obtained by the DFA method.
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Power Law Correlations in DNA Sequences 149

An interesting model can reproduce some feature of the human genome, namely the
abundance of interspersed repeats or retroposons,68 virus-like sequences that can insert them-
selves into different places of the chromosomes by reverse transcriptase. An example of such a
sequence is LINE-1, which we discussed earlier in this section.

 Suppose, we have an initially uncorrelated “chromosome” consisting of L base-pairs with
equal concentration of purines and pyrimidines and a “transposon” of length   l  << L with
strong strand bias (60% purines) and no correlations (Fig. 15A). Let us assume that at every
simulation step our “transposon” can be inserted at random places into one of the two opposite
strands of the “chromosome” with equal probabilities. In order to keep the length of the chro-
mosome constant, let us delete exactly   l  nucleotides selected at random after each insertion.
After approximately L/  l  insertions, the power spectrum of the “chromosome” reaches a steady
state shown in Figure 15B. In this example, we use L = 220,   l  = 210. Note the presence of
strong peaks in the flat spectral part for f > 0.01. And a steep slope with average slope β ≈ 0.8
for 0.0005 < f < 0.01. One can easily see (Fig. 15A) that the power spectrum of the “transposon”
which is kept unchanged during the entire simulation has strong peaks coinciding with the
peaks of the resulting “chromosome”. This example shows that the presence of many copies of
interspersed repeats (some of which have partially degraded) can lead to the characteristic peaks
at high frequencies larger than the inverse length of the retroposons and strong power-law like
correlations at low frequencies comparable with the inverse length of the retroposons.

Models of Long Range Anti-Correlations
Another interesting situation may exist in coding DNA which preserves the reading

frame. The reading frame is a non-interrupted sequence of codons each consisting of three
nucleotides. One of the most fundamental discoveries of all time, is the discovery of the
universal genetic code, i.e., that in all leaving organisms, with very few exceptions, each of
the twenty amino acids is encoded by the same combinations of three nucleotides or codons.
Since there are 43 = 64 different codons and only 20 amino acids, some amino acids are en-
coded by several codons. In the different codons used for coding the same amino acid, the first
letter is usually preserved. Since the amino acid usage is non-uniform, the same is true for the
codon usage, particularly for the frequency of the first letter in the codon. It is known80 that for

A B

Figure 15. A) Power spectrum of the “chromosome” of length L = 220 (upper curve) in comparison with
the power spectrum of the inserted “transposon”   l  = 210 (lower curve) in the insertion-deletion model.
Dotted lines indicate peaks present in both sequences. B) Power spectra of the “chromosome” after 1024
iterations (lower curve) and after 16384 iterations (upper curve) showing that the model reaches steady
state after L/  l  = 210 iterations.
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150 Power Laws, Scale-Free Networks and Genome Biology

all coding sequences in the GenBank, there is a preference for purine in the first position in the
codon (32% G and 28% A) and for weakly bonded pair in the second position (31% A and
28% T). This preference exists for any organism in the entire phylogenetic spectrum and is the
basis for the species independence of mutual information.44

Accordingly, let us generate many patches of different length l in which the frequencies of
a certain nucleotide at positions 3k + 1 + c, 3k + 2 + c, and 3k + c are f1, f2 and f3. Here c is a
random offset which is constant within each patch and can take values 0,1,2 with equal prob-
abilities. Following Herzel and Grosse,43 we will call this construction a random exon model.

All the correlation properties of the random exon model can be computed analytically. But
even without lengthy algebra, it is clear that the correlation function will oscillate with period
three being positive at positions r = 3k and negative at positions r = 3k + 1 and r = 3k + 2. The
envelope of these oscillations will decay, either exponentially if the patch length is distributed
exponentially or as a power law if the distribution of patches is a power law P(l) ~ l–µ. Accordingly,
in the power spectrum, there will be either a finite strong peak at frequency f = 1/3 with intensity
proportional to the weighted average patch length or a power law singularity |f – 1/3|µ–3 if 2 < µ
< 3. If µ ≤ 2, it will be 1/f-singularity |f – 1/3|–1.

Figure 16A,B shows the correlation function for the random exon model with f1 = 0.29,
f2 = f3 = 0.2 and a power law distribution of reading frame lengths with µ = 2.5. Figure 16C

A B

C D

Figure 16. A) Correlation function for the random exon model with power-law distribution of reading frame
lengths P(l) ~ l–2.5 oscillates with period three. B) The log-log plot of the absolute value of the correlation
function for the same sequence. The power-law correlations with exponent γ = 0.57 are clearly seen. C) The
power spectrum of the same sequence. It is almost flat with a strong peak at f = 1/3. D) The log-log plot of the
power spectrum with the subtracted white noise level. The power law correlations with β = 0.64 are clearly seen.
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Power Law Correlations in DNA Sequences 151

shows the power spectrum of this sequence and finally Figure 16D shows the log-log plot of
|P(f ) – C(0)| versus |f – 1/3|. One can see approximate straight line behavior with the slope 0.6.
The DFA analysis fails to show the presence of any power law correlations except for a small
bump at r = 3 (not shown).

Analysis of DNA Sequences
In this section, we finally present the analysis of real DNA sequences. The examples of the

previous sections show us that among different methods of analysis, the power spectrum usu-
ally gives the best results. In contrast to C(r) method, it provides natural averaging of the long
range correlations from a broad interval of large distances [r,r + ∆r] adding them up into a
narrow range of low frequencies [1/r – ∆r/r2,1/r]. Thus, the power spectrum restores useful
information which cannot be seen from C(r) quickly sinking below the white noise level for
large r. On the other hand, the power spectrum does not smooth out the details on the short
length scales corresponding to high frequencies as DFA does. Also it is much less computationally
intensive than the two other methods. Once the intuition on how to use the power spectrum
analysis is developed, it can be applied to DNA sequences with the same success as in X-ray
crystallography, especially, today when the length of the available DNA sequences becomes
comparable with the number of atoms in the nano-scale experimental systems. Not surpris-
ingly, power spectra of the DNA from different organisms have distinct characteristic peaks,81

similarly to the X-ray diffraction patterns of different substances. Accordingly, in this section,
we will use only the power spectrum analysis.

In the beginning of 1990, when the first long DNA sequences became available, an im-
portant practical question was to find coding regions in the “sea” of noncoding DNA which
constitutes 97% of human genome. The problem was not only to determine genes, i.e., the
regions which are transcribed in the process of RNA transcription, but also the exons, the
smaller segments of genes which remain in the messenger RNA after the noncoding introns are
spliced out. Only the information from exons is translated into proteins by the ribosomes.51,52

That is why, the claim of reference 31 that the non-coding DNA sequences have stronger
power law correlations than the coding ones attracted much attention and caused a lot of
controversy.34 The results of reference 31 were based on the studies of a small subset of se-
quences using DNA landscape technique (see Fig. 13). Later these results were confirmed by
the DFA method, the wavelet,55,72,82 the power spectrum80 and modified standard deviation
analyses.83 However, the difference between coding and noncoding DNA appeared to be not as
dramatic as it was originally proposed. In Figure 17 we present the results80 of the analysis of
33301 coding and 29453 noncoding sequences of the eukaryotic organisms. These were all the
genomic DNA sequences published in the GenBank release of August 15th, 1994 whose length
was at least 512 nucleotides. The power spectrum is obtained by averaging power spectra calcu-
lated by FFT of all non-overlapping intervals of length N = 29 = 512 contained in the analyzed
sequences. The conclusions hold not only for the average power spectrum of all eukaryotes but
also for the average power spectra of each organism analyzed separately.

Unlike the graphs for Ising model, the log-log graphs for coding and non-coding DNA
are not straight but have three distinct regimes for high (H) (f > 0.09), medium (M) 0.012 < f
< 0.09 and low (L) f < 0.012 frequencies. The slopes βM in the region of medium frequencies
can be obtained by the least square linear fit. For RY mapping rule (see Section VI) presented
in Figure 17 for coding DNA, we see βM = 0.03 which corresponds to the white noise, while
for non-coding DNA we see weak power-law correlations with βM = 0.21. Reference 80 con-
tains the tables of the exponents βM obtained for various eukaryotic organisms for seven differ-
ent mapping rules (RY, SW, KM, A, C, G, T). For all the rules and all the organisms, the
exponent βM for the averaged power spectra of non-coding regions is always larger than βM for
coding regions. For some rules, such as SW, the exponent βM is negative for coding DNA and
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152 Power Laws, Scale-Free Networks and Genome Biology

is close to zero for non-coding DNA. But the algebraic values of the exponents for non-coding
DNA is always larger than for coding DNA. The histogram of values of βM computed for
individual 512-bp sequences has a roughly Gaussian shape with standard deviation σ = 0.3
which is several times larger than the difference between mean values of βM for coding and
non-coding DNA. This makes the use of fractal exponent βM impractical for finding coding
regions.84

A much more important characteristic of the power spectrum is the height of the peak at
the codon frequency f = 1/3, which was included in the standard gene finding tool boxes.85,86

Figure 17 shows that the peak for coding regions is several times higher than for non-coding
ones. The presence of the weak peak in the noncoding regions can be attributed to the non-
identified genes or to pseudo-genes which have recently (on the evolutionary time scale) be-
come inactive (like olfactory genes for humans). The presence of the peak can be explained by
the non-uniform codon usage, (see section “Models of Long Range Anti-Correlations”, Fig. 16).

Another interesting and distinctive feature of non-coding DNA is the presence of the
peak at f = 1/2 as in the anti-ferromagnetic Ising model. This peak can be attributed to the
presence of long tandem repeats ...CACACA... and …TGTGTG… which are prolific in non-
coding DNA but very rare in the coding (see next section).

Presently, when several complete or almost complete genomes are just a mouse-click away, it
is easy to test if the true power-law long-range correlations do exist in the chromosomes of
different species. Figure 18A,B shows power spectra of the 88 million base-pair contig of the
human chromosome XIV computed according to the seven mapping rules described in section
“Correlation Analysis of DNA Sequences”. A very interesting feature of the human genome is the
presence of the strong peaks at high frequencies. These peaks are much stronger than the peak at
f = 1/3 for coding DNA. It is plausible that these peaks are due to the hundreds of thousands
almost identical copies of the SINE and LINE repeats,87 which constitute a major portion of
human genome.68 If one compares the peaks in the power spectrum of the chromosome, with

Figure 17. The RY power spectrum obtained by averaging power spectra of all eukaryotic sequences longer
than 512 bp, obtained by FFT with window size 512. Upper curve is average over 29,453 coding sequences;
lower curve is average over 33,301 noncoding sequences. For clarity, the power spectra are shifted vertically
by arbitrary quantities. The straight lines are least squares fits for second decade (Region M). The values of
βM for coding and noncoding DNA obtained from the slopes of the fits are 0.03 and 0.21, respectively.
(From ref. 80.)
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Power Law Correlations in DNA Sequences 153

the peaks in the power spectra of various SINE and LINE sequences, one can find that some of
these peaks coincide as in the model of insertion-deletion discussed in section “Alternation of
Nucleotide Frequencies”. The absence of these peaks in the genomes of primitive organisms (see
Fig. 18C) is in agreement with the fact that these organisms lack interspersed repeats.

A B

C D

Figure 18. A) Power spectra for seven different mapping rules computed for the Homo sapiens chromo-
some XIV, genomic contig NT_026437. The result is obtained by averaging 1330 power spectra com-
puted by FFT for non-overlapping segments of length N = 216 = 65536. B) Power spectra for SW, RY,
and KM mapping rules for the same contig extended to the low frequency region characterizing extremely
long range correlations. The extension is obtained by extracting low frequencies from the power spectra
computed by FFT with N = 224 = 16M base pairs. Three distinct correlation regimes can be identified.
High frequency regime (f < 0.003) is characterized by small sharp peaks. Medium frequency regime
(0.5·10–5 < f < 0.003) is characterized by approximate power-law behavior for RY and SW mapping rules
with exponent βM = 0.57. Low frequency regime (f < 0.5·10–5) is characterized by β = 1.00 for SW rule.
The high frequency regime for RY rule can be approximated by βH = 0.16 in agreement with the data of
Figure 17. C) RY Power spectra for the entire genome of E. coli (bacteria), S. cerevisae (yeast) chromosome
IV, H. sapiens (human) chromosome XIV and the largest contig (NT_032977.6) on the chromosome I;
and C.elegans (worm) chromosome X. It can be clearly seen that the high frequency peaks for the two
different human chromosomes are exactly the same, while they are totally different from the high
frequency peaks for other organisms. One can also notice the presence of enormous peaks for f = 1/3 in
E. coli and yeast, indicating that their genomes do not have introns, so that the lengths of coding segments
are very large. The C. elegans data can be very well approximated by power law correlations S(f ) ~ f–0.28

for 10–4 < f < 10–2. D) Log-log plot of the RY power spectrum for E. coli with subtracted white noise level
versus |f – 1/3|. It shows a typical behavior for a signal with finite correlation length, indicating that the
distribution of the coding segments in E. coli has finite average square length.
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154 Power Laws, Scale-Free Networks and Genome Biology

It is clear that the long-range correlations lack universality, i.e., they are different for dif-
ferent species and strongly depend on the mapping rule. The slopes of the power spectra change
with frequency and undergo sharp crossovers which do not coincide for different organisms.
The strongest correlations with the spectral exponent β = 1 are present for SW rule at low
frequencies, indicating the presence of the isochores. The middle frequency regime which can
be particularly well approximated by power law correlations in C. elegans can be explained by
the generalized duplication-mutation model of W. Li in which duplications and mutations
occur on the level genes, consisting of several hundred base pairs. The high frequency correla-
tions, sometimes characterized by small positive slopes of the power spectra can be attributed
to the presence of simple sequence repeats (see next section). In contrast, the high frequency
spectrum of the bacterium E. coli is almost flat with the exception of the huge peak at f = 1/3.
Bacterial DNA practically does not have noncoding regions, thus (in agreement with refs.
31,72,80,82) it does not have long range correlations on the length scales smaller than the
length of a typical gene. Large peaks at |f – 1/3| in the power spectra of E. coli and yeast are
consistent with fact that these primitive organisms do not have introns and therefore their
open reading frames are very long. The spectrum of E. coli printed versus |f – 1/3| shows a
horizontal line for f → 1/3 on a double logarithmic plot indicating that the length distribution
of the open reading frames has finite second moment.

Distribution of Simple Repeats
The origin, evolution, and biological role of tandem repeats in DNA, also known as

microsatellites or simple sequence repeats (SSR), are presently one of the most intriguing puzzles
of molecular biology. The expansion of such SSR has recently become of great interest due to
their role in genome organization and evolutionary processes.88-100 It is known that SSR con-
stitute a large fraction of noncoding DNA and are relatively rare in protein coding sequences.

SSR are of considerable practical and theoretical interest due to their high polymorphism.97

The formation of a hairpin structure during replication is believed to be the cause of the CAG
and CTG repeat expansions, which are associated with a broad variety of genetic diseases.
Among such diseases are fragile X syndrome,101 myotonic dystrophy, and Huntington’s dis-
ease94,102 SSR of the type (CA)  l  are also known to expand due to slippage in the replication
process. These errors are usually eliminated by the mismatch-repair enzyme MSH2. However,
a mutation in the MSH2 gene leads to an uncontrolled expansion of repeats—a common cause
of ovarian cancers.103 Similar mechanisms are attributable for other types of cancer.85,92,93

Telomeric SSR, which control DNA sequence size during replication, illustrate another crucial
role of tandem repeats.51

Specifically, let us consider the distribution of the most simple case of SSR—repeats of
identical dimers XYXY...XY (“dimeric tandem repeats”). Here X and Y denotes one of the four
nucleotides: adenine (A), cytosine (C), guanine (G), and thymine (T). Dimeric tandem repeats
are so abundant in noncoding DNA that their presence can even be observed by global statis-
tical methods such as the power spectrum. For example, Figures 17 and 18A-C show presence
of a peak at (1/2)bp–1 in the power spectrum of noncoding DNA (corresponding to repetition
of dimers) and the absence of this peak in coding DNA. The abundance of dimeric tandem
repeats in noncoding DNA suggests that these repeats may play a special role in the organiza-
tion and evolution of noncoding DNA.

First, let us compute the number of repeats in an uncorrelated sequence. Suppose that we
have a random uncorrelated sequence of length 2L which is a mixture of all 16 possible types of
dimers XY, each with a given frequency f XY, The probability that a randomly selected dimer
belongs to a dimeric tandem repeat (XY)  l  of length   l  can be written as

      P f fXY XY XYl ll( ) = ⋅ −( ) ⋅1
2

, (45)
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Power Law Correlations in DNA Sequences 155

where (1 – fXY) is the terminating factor responsible for not producing an additional unit XY at
the beginning (or end) of the repeating sequences and the factor   l  takes into account   l  pos-
sible positions of a dimer XY in a repeat (XY)  l . Since the total number of dimers in our
sequence is L, the number of dimers in the repeats (XY)  l  is LPXY(  l ) =   lNXY(  l ), where
NXY(  l ) is the total number of repeats (XY)  l  in a sequence of length 2L. Finally,

      N f f L eXY XY XY
f XYl l l( ) = ⋅ −( ) ⋅ − ⋅1

2
~ ,ln (46)

which decreases exponentially with the length of the tandem repeat. Thus, a semi-logarithmic
plot of NXY(  l ) versus   l  must be a straight line with the slope

    − = ( )k f XYunc ln . (47)

In order to compare the prediction of this simple model with real DNA data, we estimate
f XY for the real DNA as follows: (i) divide the DNA sequence into L non-overlapping dimers,
(ii) count nXY, the total number of occurrences of a dimer XY in this sequence, and calculate

    
f

n
L

XY
XY≡ . (48)

Indeed, most dimeric tandem repeats in coding DNA produce linear semilogarithmic
plots, (Fig. 19A) but with slopes significantly different from those predicted by (47). The
deviation of the slopes from prediction (47) can be explained by the short order Markov corre-
lations.106,107

On the other hand, semilogarithmic plots of the length distributions of dimeric repeats
for noncoding parts (Fig. 19C) are usually not straight, but display negative slope with con-
stantly decreasing absolute value which indicates that their probability decays less rapidly than
exponentially. Indeed, these distributions can be better fit by straight lines on a double loga-
rithmic plot (Fig. 19D)

      N XY l l( ) −~ .µ (49)

A simple model to explain the power law behavior (49) was presented in references 106
and 108. The mechanism proposed in references 106 and 108 is based on random multiplica-
tive processes, which can reproduce the observed non-exponential distribution of repeats. The
increase or decrease of repeat length can occur due to unequal crossover51,109 or slippage during
replication.92,100,110,111 It is reasonable to assume (see ref. 110 and refs. therein) that in these
types of mutations, the new length   l ' of the repeat is not a stepwise increase or decrease of the
old length   l , but is defined as a product   l ' =   l r, where r is some random variable.

For simplicity we neglect point mutations and assume that with conditional probability
π(r,  l ) in a single mutation, a repeat of length   l  can expand or shrink to a repeat of length r  l ,
where the function π(r,  l ) is normalized:

      
π r dr, .l( ) =

∞
∫0 1 (50)

After t steps of evolution the length of the repeat is given by

      
l lt i

i

t
r=

=
∏ 0

1
, (51)

where ri is a random variable taken from a distribution with probability density π(r,  l ). Such a
process is called a random multiplicative process and, in many cases, leads in the long time
limit (t → ∞) to a stable distribution of repeat length P(  l ). According to Eq. (51), repeats may
fluctuate in length and even disappear. Thus, to prevent the extinction of repeats, one can
either set a non-zero probability for a repeat to reappear, or set π(r,  l ) = 0 when r  l  ≤ 1. Both
ways are mathematically equivalent and might be biologically controlled by point mutations.
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156 Power Laws, Scale-Free Networks and Genome Biology

If we take the logarithm of both parts of Eq. (51) and change variables to z ≡ ln  l , the
process becomes a random diffusion process in semi-infinite space z > 0 in which a particle
makes steps νi = lnri. The distribution of steps   ̃π (ν,z) can be related to the original distribution
of growth-rates, π(r,  l ). Indeed, in the continuum limit   ̃π (ν,z)dν = π(r,  l )dr, or   ̃π (ν,z) =
π(eν,ez)eν .

A classical example of such a process is Brownian motion in a potential field U(z), which
leads for t → ∞ to a Boltzmann probability distribution (3). The strength and the direction of
the potential force f (z) = –dU/dz depends on the probability distribution   ̃π (ν,z). If probabil-
ity to go up is larger than the probability to go down, the force acts upward, so the particle
travels upward indefinitely and no stable probability distribution is observed. (This situation
corresponds to the uncontrollable expansion of repeats as in some types of cancers.) If the
distribution   ̃π (ν,z) does not depend on z, the force is constant. If the force is constant and
acting down as the gravitational force on the Earth, the final probability distribution decays
exponentially with z as the density of Earth’s atmosphere

A B

C D

Figure 19. The combined plot of the normalized number N0(  l ) ≡ NXY (  l )/NXY (1) of repeats for six groups
of dimeric tandem repeats in human genome averaged over analogous repeats in each group: (AA)  l  and
(TT)  l  (° ); (TA)  l  and (AT)  l  (∆); (CA)  l ,(AC)  l ,(TG)  l  and (GT)  l  (�); (GA)  l ,(AG)  l , (TC)  l  and
(CT)  l  (◊); (CC)  l  and (GG)  l  (�); (GC)  l  and (CG)  l  (�). Semi-logarithmic plot for coding DNA (A),
double-logarithmic plot for coding DNA (B), semi-logarithmic plot for noncoding DNA (C), and double-
logarithmic plot for noncoding DNA (D). For clarity, we separate plots for these six groups by shifting them
by a factor of 100 on the ordinate. The values of µ for six groups of repeats in (D) are 3.6, 3.3, 3.2, 4.1, 6.7,
and 5.4 from top to bottom, fitting range is   l  > 5. The values of µ for strongly bonded repeats GC,CG and
CC,GG are significantly larger than for other repeats. (From ref. 107.)
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    P z e kz( ) −~ , (52)

where is a positive constant which depends on the distribution   ̃π (ν,z) =   ̃π (ν).
Using the theory of Markovian processes (Section III), one can show that the final prob-

ability distribution P(z) must satisfy an equation analogous to (9) in which P(z) plays the role
of eigenvector a1 and   ̃π (ν,z) plays the role of transition matrix P. In the continuum limit we
have P(z) = ∫ −∞

∞ P(z – ν)  ̃π (ν,z – ν)dν, which in case   ̃π (ν,z) =   ̃π (ν) has solution (52) and k >
0 must satisfy equation

    
exp ˜ .k dν π ν ν( ) ( ) =

−∞

∞
∫ 1 (53)

After transforming back to our original variables, the solution (52) can be rewritten in the
form of a power law,

    P l l( ) = −µ (54)

where µ = k + 1 > 1. Accordingly (53) must be rewritten in the form

    
r r drµ π−∞

∫ ⋅ ( )1
0

(55)

Equation (55) always has a trivial solution µ = 1 (due to the normalization (50)). How-
ever, Eq. (55) may also have additional roots, µ > 1. If it does not have such roots then the final
distribution does not exist. This case corresponds to the uncontrollable expansion of repeats.

Let us discuss two examples, in which Eq. (55) has simple solutions. For example, if π(r)
is a step-function

    
π r

r

r r
( ) =

≤ ≤

< >

⎧
⎨
⎩

1 2 0 2

0 1 2

/ ,

, , ,
(56)

equation (55) becomes

  

1

2

2
1⋅ =

µ

µ
. (57)

Eq. (57) has a solution µ = 2. The above case can serve as the simplest model of unequal
crossover,108 after which a repeat of length   l  becomes of length   l ·(1 + r) in the first allele and
of length   l ·(1 – r) in the second allele. If both alleles have equal probability of becoming fixed
in the population, we arrive to Eq. (56).

In another simple example we take

    π π δ π δr r r( ) = ⋅ −( ) + ⋅ −( )1 21 2 2/ , (58)

where π1 + π2 = 1 and δ(r) is the Dirac delta-function, i.e., with probability π1 the repeat can
shrink by factor of two and with probability π2 it can grow by factor of two. In this case,
Eq. (55) can be written as

  
π π

µ
µ

1

1

2
11

2
2 1⋅

⎛
⎝
⎜

⎞
⎠
⎟ + ⋅ =

−
− , (59)

which has a root µ = 1 + log2(π1/π2). If probability to grow is larger than probability to shrink,
π2 > π1, we have µ < 1, which, as we see above, leads to an uncontrollable expansion of repeats
as in some diseases. These simple examples show that our multiplicative model is capable to
explain the power law distribution of simple repeats with any exponent µ > 1.

In the general case of discrete multiplicative processes, one cannot obtain analytical solu-
tions. However, numerical simulations106 show that Eq. (54) still provides a good approxima-
tion for large   l . The deviation of the actual distributions (Fig. 19) from an exact power law can
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be explained if one takes into account that the distribution of growth rates π(r,  l ) may depend
on the length of the repeat   l .107,112 This is especially plausible for the slippage during replica-
tion mechanism, since the ability for a DNA molecule to form hairpins clearly depends on the
length of a segment involved in the slippage and on its biophysical properties and thus must
depend on the type of repeat. Therefore, it is not surprising that different types of repeats have
different length distribution. For example, the distribution of (AC)  l  and (TG)  l  repeats in
vertebrates have plateaus in the range 10 <   l  < 30. In contrast, the distributions of (CC)  l ,
(CG)  l  and (GG)  l , and repeats decay much faster than other repeats which include weakly
bonded base pairs.

A different model proposed by reference 113 can also reproduce long tails in the repeat
length distribution. This model assumes the stepwise change in repeat length with the muta-
tion rate proportional to the repeat length. It is possible to map this model to a random multi-
plicative process with a specific form of distribution π(r,  l ), where r =   l'/  l ,   l  is the original
length and   l' is a repeat length after a time interval during which several stepwise mutations
can occur.

From the analysis in section “Alternation of Nucleotide Frequencies”, it follows that simple
tandem repeats randomly distributed along the sequence can produce long-range power-law
correlations if, and only if, µ < 3. However, in almost all real DNA sequences µ > 3, which
means that simple tandem repeats alone cannot explain long-range correlations. On the other
hand, simple tandem repeats may be the primary source of the difference in correlation prop-
erties of coding and noncoding sequences at relatively short length scales of   l  ≈ 100 bp.78,79 In
order to test such a possibility, we construct a random dimeric repeat model by randomly
selecting all possible repeats (XY )  l  from the empirically observed distribution NXY(  l ) and
concatenating them into an artificially constructed sequence of nucleotides. Figure 20 shows
the power spectra of two sequences produced by random concatenations of various dimeric
repeats taken from the noncoding and coding mammalian DNA. These power spectra show a
slight difference in the spectral exponent βM in the region of medium frequencies analogous to
Figure 17. Note that the difference in the spectral exponents in the random repeat model is
smaller than in real sequences. However, here we consider only dimeric tandem repeats, thus

Figure 20. RY power spectra of the random dimeric tandem repeat model for coding and noncoding DNA
for the mammalian sequences.
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neglecting the repeats of other types. We also neglect the possibility of imperfect repeats inter-
rupted by several point mutations.

Finally, dimeric tandem repeats can explain the difference observed in the distribution of
n-letter words in coding and non-coding DNA (see Fig. 21). As an example, we show the rank-
frequency of the 6-letter words (hexamers) for invertebrate coding and noncoding sequences in
the form of the so called Zipf plots.114 For natural languages, Zipf graphs show that the fre-
quency of a word in a text is inverse proportional to its rank. For example, in an English text,
the most frequent word is “the” (rank 1), the second most frequent word is “of” (rank 2), the
third most frequent word is “a” (rank 3) and so on. Accordingly, the frequency of word “of” is
roughly two times smaller than the frequency of word “the” and the frequency of word “a” is
roughly three times smaller than the frequency of “the”. Thus on the log-log scale, the Zipf
graph is a straight line with the slope -1. In a DNA sequence, there is no precise definition of
the “word”, so one can define “word” as any string of the fixed number of consecutive nucle-
otides that can be found in the sequence. One can notice that the Zipf graph for non-coding
DNA is approximately straight but with a slope smaller than 1, while for coding DNA, the
graph is more curvy and is less steep. This observation led Mantegna et al 115,116 to conclude
that noncoding DNA have some properties of natural languages, namely redundancy. Accord-
ingly, noncoding DNA may contain some “hidden language”. However, this conjecture was
strongly opposed by the bioinformatics community.117 Indeed, Zipf graphs of coding and non-
coding DNA can be trivially explained by the presence of dimeric tandem repeats (Fig. 21).

To conclude, noncoding DNA may not contain any hidden “language” but it definitely
has lot of hidden biological information. For example, it contains transcription regulatory
information which is very difficult to extract. Application of correlation analysis may help to
solve this problem.118

Conclusion
Long range correlations of different length scales may develop due to different mutational

mechanisms. The longest correlations, on the length scales of isochores may originate due to

Figure 21. Log-log plot of the frequency of 6-letter words (hexamers) versus their rank for invertebrate
coding and non-coding sequences in comparison with the same graphs produced by the random dimeric
repeat model.
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base-substitution mutations during replication (see ref. 77). Indeed, it is known that different
parts of chromosomes replicate at different stages of cell division. The regions rich in C+G
replicate earlier than those rich in A+T. On the other hand, the concentration of C+G precur-
sors in the cell depletes during replication. Thus the probability of substituting A/T for C/G is
higher in those parts of the chromosome that replicate earlier. These unequal mutation rates
may lead to the formation of isochors.77 Correlations on the intermediate length scale of thou-
sands of nucleotides may originate due to DNA shuffling by insertion or deletion57,58 of trans-
posable elements such as LINES and SINES66,68,119 or due to a mutation-duplication process
proposed by W. Li56 (see also ref. 120).

Finally, the correlations on the length scale of several hundreds of nucleotides may evolve
due to simple repeat expansion106,108 As we have seen in the previous section, the distributions
of simple repeats are dramatically different in coding and noncoding DNA. In coding DNA
they have an exponential distribution; in noncoding DNA they have long tails that in many
cases may be fit by a power law function. The power law distribution of simple repeats can be
explained if one assumes a random multiplicative process for the mutation of the repeat length,
i.e., each mutation leads to a change of repeat length by a random factor with a certain distri-
bution (see ref. 106). Such a process may take place due to errors in replication110 or unequal
crossing over (see ref. 108 and refs. therein). Simple repeat expansion in the coding regions
would lead to a loss of protein functionality (as, e.g., in Huntington’s disease110) and to the
extinction of the organism.

Thus the weakness of long-range correlations in coding DNA is probably related to the
coding DNA’s conservation during biological evolution. Indeed, the proteins of bacteria and
humans have many common templates, while the noncoding regions can be totally different
even for closely related species. The conservation of protein coding sequences and the weakness
of correlations in the amino acid sequences121 are probably related to the problem of protein
folding. Monte-Carlo simulations of protein folding on the cubic lattice suggest that the statis-
tical properties of the sequences that fold into a native state resemble those of random se-
quences.122

The higher tolerance of noncoding regions to various mutations, especially to mutations
involving the growth of DNA length—e.g., duplication, insertion of transposable elements,
and simple repeat expansion—lead to strong long-range correlations in the noncoding DNA.
Such tolerance is a necessary condition for biological evolution, since its main pathway is be-
lieved to be gene duplication by chromosomal rearrangements, which does not affect coding
regions.123 However, the payoff for this tolerance is the growth of highly correlated junk DNA.
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