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We study the distributions of traveling length l and minimal traveling time tmin through two-dimensional
percolation porous media characterized by long-range spatial correlations. We model the dynamics of fluid
displacement by the convective movement of tracer particles driven by a pressure difference between two fixed
sites ~‘‘wells’’! separated by Euclidean distance r. For strongly correlated pore networks at criticality, we find
that the probability distribution functions P(l) and P(tmin) follow the same scaling ansatz originally proposed
for the uncorrelated case, but with quite different scaling exponents. We relate these changes in dynamical
behavior to the main morphological difference between correlated and uncorrelated clusters, namely, the
compactness of their backbones. Our simulations reveal that the dynamical scaling exponents d l and d t for
correlated geometries take values intermediate between the uncorrelated and homogeneous limiting cases,
where l*;rd l and tmin* ;rd t, and l* and tmin* are the most probable values of l and tmin , respectively.
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I. INTRODUCTION

Fluid transport in porous media is of central importance to
problems in petroleum exploration and production @1–4#.
The geometry of an oil field can be very complex, displaying
heterogeneities over a wide range of length scales from cen-
timeters to kilometers @5#. The most common method of oil
recovery is by displacement. Typically, water or a miscible
gas ~carbon dioxide or methane! is injected in a well ~or
wells! to displace oil to other wells. Ultimately the displac-
ing fluid will break through into a production well where it
must be separated from the oil. At this point, the rate of oil
production decreases. For economic purposes, it is important
to predict when the injected fluid will break through.

When modeling the process of oil recovery, an open ques-
tion is the effect of the connectedness of the porous medium
on the dynamical process of fluid displacement. If the pore
space is so poorly connected as to be considered macroscopi-
cally heterogeneous, one expects the overall behavior of the
flowing system to display significant anomalies. For ex-
ample, it is common to investigate the physics of disordered
media at a marginal state of connectivity in terms of the
geometry of the spanning cluster at the percolation threshold
@6,7#. First, it is clearly an advantage to use the percolation
model because a comprehensive set of exactly and numeri-
cally calculated critical exponents is available to describe not
only its geometrical features, but also its dynamical ~trans-
port! properties. Second, the application of this geometrical
paradigm can be consistently justified through ‘‘the critical
path method’’ @8#, a powerful approximation that has been
successfully used @9# to estimate transport properties ~e.g.,
permeability and electrical conductivity! of disordered po-
rous materials. Accordingly, the transport in disordered me-
dia with a broad distribution of conducting elements should
be dominated by those regions where the conductances are
larger than some critical value. This value is the largest con-

ductance such that the set of conductances above this thresh-
old forms a network that preserves the global connectivity of
the system. In percolation terminology, this is equivalent to
the conducting spanning cluster.

The extent to which the self-similar characteristic of the
critical percolation geometry can modify the displacement
process is unclear. Several studies have been devoted to the
investigation of the displacement process through percola-
tion porous media at criticality @10,11#. More recently
@12,13#, the dynamics of viscous displacement through per-
colation clusters has been investigated in the limiting condi-
tion of unit viscosity ratio m[m1 /m2, where m1 and m2 are
the viscosities of the injected and displaced fluids, respec-
tively. In this situation, the displacement front can be mod-
eled by tracer particles following the streamlines of the flow,
and the corresponding distributions of shortest path and
minimal traveling time closely obey a scaling ansatz @14,15#.
Subsequently @16#, the dynamics of viscous penetration
through two-dimensional critical percolation networks has
been investigated in the limiting case of a very large viscos-
ity ratio, m→` . The results from this study indicate that the
distribution of breakthrough time follows the same scaling
behavior observed for the case m51 @12,13#. As a conse-
quence, it has been suggested @16# that the process of viscous
displacement through critical percolation networks might
constitute a single universality class, independent of m.

The spatial distributions of porosity and permeability in
real rocks are often close to random. However, one cannot
assume that the nature of their morphological disorder is
necessarily uncorrelated, i.e, the probability for a site to be
occupied is independent of the occupancy of other sites. In
fact, the permeability of some rock formations can be con-
sistently high over extended regions of space and low over
others, characterizing in this way a correlated structure @3#.
In the case of sandstone, for example, the permeability is not
the result of an uncorrelated random process. Sand deposi-
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tion by moving water or wind ~and other mechanisms of
geological scale! naturally imposes its own kind of correla-
tions. A suitable mathematical approach to represent the ge-
ometry of the pore spaces and the corresponding transport
properties is correlated percolation @17–21#. This approach
has been successfully used to model permeability fluctua-
tions and also to explain the scale dependence of hydrody-
namic dispersion coefficients in real porous materials @22#.

Our aim here is to extend the investigation on the dis-
placement dynamics between two fluids through two-
dimensional percolation clusters at criticality @12,13# to the
case where the pore space displays long-range spatial corre-
lations. We focus on the case of viscous penetration with two
immiscible fluids of unit viscosity ratio (m51) to study the
effect of long-range correlations on the distributions of trav-
eling length and minimal traveling time.

The organization of the paper is as follows. In Sec. II, we
present the mathematical model to simulate long-range spa-
tial correlations and show some geometrical features of the
pore structures generated by this technique. We also describe
the dynamical model to simulate the process of viscous dis-
placement in porous media. We show the results in Sec. III,
and Sec. IV is discussion and summary.

II. MODEL

We start by describing the geometry of the disordered
system studied here. Our basic model of a porous medium is
a two-dimensional site percolation cluster at criticality @6,7#
modified to introduce correlations among the occupancy
units @17–21#. The correlations are induced by means of the
Fourier filtering method, where a set of random variables
u(r) is introduced following a power-law correlation func-
tion

^u~r!u~r1R!&}R2g ~0,g<2 !, ~1!

where g52 is the uncorrelated case and g'0 corresponds
to the maximum correlation. The correlated variables u(r)
are used to define the occupancy z(r) of the sites

z~r!5Q„f2u~r!…, ~2!

where Q is the Heaviside function and the parameter f is
chosen to produce a lattice at the percolation threshold. In
Figs. 1~a,b! we show typical backbones extracted from un-
correlated and correlated networks. Long-range correlations
in site occupancy give rise to variations in the structural
characteristics of the conducting backbone @19#. To illustrate
this effect quantitatively, Fig. 2 compares the fractal dimen-
sion of the conducting backbone calculated for uncorrelated
and for correlated networks with g50.5. Indeed, the fractal
dimension of the backbone is significantly larger for the cor-
related case.

For a given correlated network at criticality, we choose
two sites A and B belonging to the infinite cluster and sepa-
rated by a distance r. In oil recovery these represent the
injection and production wells ~see, Fig. 3!. We then extract
the percolation backbone between these two points. To
model incompressible flow through this disordered system,
we assume that the lattice sites have negligible volume and
the allocated bonds are homogeneous elementary units of a
porous material with constant permeability k and flow area a.
We also consider that the dynamics of fluid displacement is
governed by viscous forces and that m51 ~the invading and
displaced fluids have the same viscosity!. Under these con-
ditions and due to the strictly convective nature of the pen-
etration process, the velocity at each elementary unit can be
modeled in terms of Darcy’s law,

v i j5
k

m,
~P i2P j!, ~3!

FIG. 1. ~a! A typical percolation lattice L5256 for the uncorrelated case. Heavy lines correspond to the backbone, gray lines to dangling
ends, and light gray lines to isolated ‘‘islands’’ ~nonspanning clusters!. ~b! The same as in ~a!, but for the correlated case (g50.5).
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where P i and P j are the values of pressure at sites i and j,
respectively, and , is the length of the bond. Conservation at
each site of the backbone leads to the following set of linear
algebraic equations:

(
j

q i j5
ka

m,
(

j
~P i2P j!50, ~4!

where q i j is the volume flow rate through the bond and the
summation is taken over all bonds connected to a node i that
belongs to the cluster. As a macroscopic boundary condition,
we impose a constant flow rate Q between the injecting point
A and the extracting point B. In practice, we apply a unit
pressure drop between wells A and B, and calculate the so-
lution of Eq. ~4! in terms of the pressure field by means of a
standard subroutine for sparse matrices. Due to the linearity

of the system, the computed velocities at each bond, v i j , can
be rescaled to give a fixed total flow rate Q, independent of
the distance between A and B, and the realization of the
porous medium. This resembles more closely oil recovery
processes where constant flow is maintained instead of con-
stant pressure drop.

To simulate the displacement of fluid through the perco-
lation backbone, we first note that, under the conditions of
unit viscosity ratio (m51) and for a fixed pressure drop
between the wells, the pressure field remains constant during
the propagation of the invading front through the percolation
network. Another consequence of this simplifying assump-
tion is that the front of invading fluid in any bond (i j) of the
lattice advances locally with a constant velocity equal to v i j .
This situation can be expressed as

]F i j

]t
1v i j

]F i j

]x
50, ~5!

where F i j(x ,t) denotes the interface between invading and
displaced fluids, t is time, and x corresponds to the local
longitudinal coordinate within each elementary unit ~bond!
of the porous material. Equation ~5! expresses the fact that
the physical system considered here is always and every-
where convective for any value of the imposed flow rate Q.
This behavior is entirely analogous to the convective ~non-
diffusive! regime of hydrodynamical dispersion @1,2#, where
the unsteady transport of a neutral tracer in a carrier fluid
flowing through a porous material is totally dominated by
convective effects. In the absence of diffusive effects, the
tracer samples the disordered medium by following the ve-
locity streamlines. In the general case of hydrodynamical
dispersion, however, diffusion might play a significant role.
If the pore space is sufficiently heterogeneous, local zones of
small velocities can be found, even under conditions of high
overall flow rates. As a consequence, the propagation of the
tracer front in these regions may be diffusionlike if the char-
acteristic time for convection, tc[,/v , is greater than the
typical diffusion time, td[,

2/Dm , where Dm is the molecu-
lar diffusion coefficient of the tracer in the carrier fluid.

Applying the analogy between fluid displacement and the
convective propagation of a tracer through a disordered po-
rous material, we can now put forward a random walk pic-
ture for the front penetration of the invading fluid. Here we
follow Refs. @12,13# and use the particle-launching algorithm
~PLA!, where the movement of a set of ~tracer! particles is
statistically dictated by the local velocity field. In the PLA,
each particle starting from the injection point A can travel
through the medium along a different path connected to the
recovery point B, taking steps of length , and duration t i j
5,/v i j ~Fig. 4!. The probability p i j that a tracer particle at
node i selects an outgoing bond i j ~a bond where v i j.0) is
proportional to the velocity of flow on that bond, p i j
}v i j /(kv ik , where the summation on k is over all outgoing
bonds.

III. RESULTS

We investigate the effect of spatial long-range correlations
on the distributions of traveling length and minimal traveling

FIG. 2. Log-log plot of the backbone mass M bb versus the grid
size L for uncorrelated networks ~squares! and correlated networks
~circles!. The long-range correlated percolation structures have been
generated with g50.5. The solid lines are the least-squares fits to
the data with slopes corresponding to the fractal dimensions of the
respective backbones, dbb .

FIG. 3. The traveling paths of 10 000 tracers (L564, r516,
and g50.5). Heavy lines correspond to the bonds that receive more
than 6000 tracers, medium lines to those that receive between 1 and
6000, and thin lines to those that receive none.
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time. The traveling time t of a path C is defined as the sum of
the time steps t i j through each bond i j belonging to a con-
nected path between A and B,

t[ (
(i j)PC

t i j . ~6!

The traveling length l is the number of bonds present in path
C. Among the ensemble of all paths $C%, we select the path
C* that has the minimal traveling time tmin ,

tmin~C*![min
$C%

t~C!. ~7!

This quantity corresponds to the breakthrough time of the
displacing fluid. For a given realization of the percolation
network, we compute all the traveling lengths and the mini-
mal traveling time corresponding to the trajectories of 10 000
tracer particles. For a fixed value of r, this operation is re-
peated for 10 000 network realizations of size L3L , where
L5512, so L@r . We carried out simulations for different

values of r and found that there is always a well-defined
region where the distributions of P(l) and P(tmin) follow the
scaling form @14#

P~z !5AzS z

z*
D

2gz

f S z

z*
D , ~8!

where z denotes l or tmin , z* is the maximum of the prob-
ability distribution, the normalization constant is given by
Az;(z*)21 and the scaling function has the form @12,13#

f ~y !5exp~2azy
2fz!. ~9!

The exponents fz and dz are related by @23#

fz51/~dz21 !. ~10!

Note that the scaling function f decreases sharply when z is
smaller than z*. The lower cutoff is due to the constraint,
l>r .

FIG. 4. ~a! Log-log plot of traveling distance distribution P(l) for g50.5 and r54,8,16,32,64. ~b! Log-log plot of the most probable
value l* for traveling length versus the distance r. The straight line is the least-squares fit to the data, d l51.1360.02. ~c! Data collapse
obtained by rescaling l with its characteristic value l*;r1.13. The least-squares fit to the data in the scaling region gives g l52.3560.05.
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In Figs. 4~a! and 5~a! we show log-log plots of the prob-
ability densities P(l) and P(tmin), respectively, for five dif-
ferent values of ‘‘well’’ separation, r54, 8, 16, 32, and 64.
For each curve, we determine the characteristic size z* as the
peak of the distribution and plot z* on a double logarithmic
scale. As shown in Figs. 4~b! and 5~b!, the results of our
simulations indicate that both l* and tmin* , respectively, have
power-law dependences on the distance r, z*;rdz. The lin-
ear fit to the data yields the exponents dz for each distribu-
tion, namely,

d l51.1360.02 ~correlated! ~11!

and

d t51.7560.03 ~correlated!. ~12!

The same exponents reported in Refs. @12,13# for the case of
flow through uncorrelated percolation networks (g52.0) at
constant flux are

d l'1.21 ~uncorrelated! ~13!

and

d t'1.33 ~uncorrelated!. ~14!

Once more, the differences in these exponents for the corre-
lated and uncorrelated cases can be explained in terms of the
morphology of the conducting backbone. As g decreases, the
backbone becomes gradually more compact @19#. This dis-
tinctive feature of the correlated geometry tends to reduce
the value of d l and augment the value of d t as the strength of
the long-range correlations increases ~i.e., g decreases!. In
the limiting case of a homogeneous system, the correspond-
ing exponents are d l51 and d t52 @1,13,24#.

Figures 4~c! and 5~c! show the data collapse obtained by
rescaling l and tmin by their characteristic sizes, l* and tmin* .
Both scaled distributions are consistent with the scaling form

FIG. 5. ~a! Log-log plot of the minimum traveling time distribution P(tmin) for g50.5 and r54,8,16,32,64. ~b! Log-log plot of the most
probable values for the minimal traveling time tmin versus the distance r. The straight line is the least-squares fit to the data, with the number
indicating the slope, d t51.7560.03. ~c! Data collapse obtained by rescaling tmin with its characteristic time tmin* ;r1.75. The least-squares fit
to the data in the scaling region gives g t51.8960.04.
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of Eq. ~8!. From the least-squares fit to the data in the scaling
regions, we obtain the exponents

g l52.3560.05 ~correlated! ~15!

and

g t51.8960.04 ~correlated!. ~16!

For uncorrelated pore networks subjected to the condition of
constant flux, the exponents are @12,13#

g l'2.0 ~uncorrelated! ~17!

and

g t'2.0 ~uncorrelated!. ~18!

The differences between these distribution exponents have
their origins in the different levels of compactness between
correlated and uncorrelated clusters. These results are com-
patible with those of previous studies @19,20#, which indicate
that spatial correlations can change other critical exponents.

IV. DISCUSSION

The need for a better description of the geometrical fea-
tures of the pore space has been the main conclusion of sev-
eral recent experimental and theoretical studies on transport
phenomena in disordered porous materials @3#. It is therefore
necessary to examine local aspects of the pore space mor-
phology and relate them to the relevant mechanisms of mo-
mentum, heat and mass transfer in order to understand the
important interplay between porous structure and phenom-
enology. From a conceptual point of view, this task has been
accomplished in many works, where computational simula-
tions based on a detailed description of the pore space have
been fairly successful in predicting and validating known
correlations among transport properties of real porous media
@25–29#. In the present work, we have investigated the dy-
namics of immiscible fluid displacement using the frame-
work of a percolation model for porous media that has been
specially modified to introduce spatial long-range correla-

tions among the occupancy units of permeability. This model
is certainly a more realistic description for the geometry of
porous rocks and should lead to a better mathematical repre-
sentation of their transport properties.

Our results on the distributions of traveling length and
minimal traveling time through correlated percolation net-
works show that spatial fluctuations in rock permeability can
have significant consequences on the dynamics of fluid dis-
placement. More precisely, we observed that the presence of
long-range correlations can substantially modify the scaling
exponents of these distributions and, therefore, their univer-
sality class. As in previous studies on the subject @19,20#, we
explain this change of behavior in terms of the morphologi-
cal differences among uncorrelated and correlated pore
spaces generated at criticality. Compared to the uncorrelated
structures, the backbone clusters of the correlated cluster
have a more compact geometry. The level of compactness
depends, of course, on the degree of correlations introduced
during the generation process. Moreover, our results are con-
sistent with the fact that the dynamical scaling exponents d l
and d t obtained for correlated geometries assume values in-
termediate between the uncorrelated and the homogeneous
limiting cases.

As a future work, we will perform computational simula-
tions for different values of g in order to determine the de-
pendence form of dz and gz on the degree of long-range
correlations. We will also investigate the effect of spatial
long-range correlations on the dynamics of viscous displace-
ment through percolation networks in the limiting case of a
very large viscosity ratio, m→` . Similar to a previous study
on uncorrelated structures @16#, the basic idea is to provide a
preliminary test for universality in the critical exponents dz
and gz with respect to the parameter m.
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