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We investigate the reaction kinetics for systems in which the dynamics of the particles is governed by
a Langevin equation with negligible damping, and we find the expressions for the survival probability, re-
sidual concentrations, and reaction rates. We discover that the integral in time of the reaction front for
d=1is t'"Pexp(—|x|/t*) for both the low and high damping limits, and we estimate the exponents a

and B in each case.
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Considerable recent attention has been focused on the
study of simple irreversible chemical reactions in which
the reactants are transported by diffusion, and react on
contact [1,2]. Diffusion is modeled by random walkers
— particles whose motion is characterized by random
and, in general, uncorrelated velocities. However, there
may be situations where it is more realistic to assume
that particles move solely under the influence of random
forces. These situations might arise in low-viscosity
liquids that are being mixed, in systems that display tur-
bulence, or in systems undergoing a fast increase in tem-
perature.

In a general random-force model, the motion of the
particle is a second-order process whose dynamical evolu-
tion is governed by the Langevin equation

i+yx=f@). )

Here y represents a damping coefficient, and the force
f(t) is a random variable. In the simplest case, we can
assume that the force is Gaussian distributed with mean
zero [3]. According to the value of y, two regimes can be
identified. In the large y limit, the behavior of the parti-
cle quickly becomes that of a normal random walker; we
call this regime *“diffusion limited.” The second regime
corresponds to the limit where 7 is negligible, and the dy-
namics of the particles is dominated by the random-force
term of Eq. (1). The kinetics in this regime, which we
call the “random-force-dominated” regime, have not been
treated previously—in contrast to the much more studied
diffusion-limited case [1,2].

In the random-force-dominated regime, the absence of
damping results in a superdiffusive motion [4] of the
reactants and enhanced reaction rates. In particular, we
find that the survival probability of a particle in the pres-
ence of a random distribution of traps is much smaller
than in the classical diffusion-limited regime [5,6]. We
also find that for reactions of the form A+ B — C, with
homogeneous initial distribution of the reactants in equal
concentrations (¢4 =cg), this dynamics leads to residual
concentrations that decay as ¢ ~' for dimensions above
the critical dimension d. = %. This is consistent with ex-
perimentally measured decays which have been interpret-

ed in terms of mean-field formalisms [7]. For d=1 we
find that the concentrations decay as ¢ ~*/%. If the reac-
tants are initially separated, we find that the form of the
time-integrated distribution of C particles for d=1 is
t'"Pexp(—|x|/t®) for both the simple diffusion case
(with @=0.3 and B=0.8) and the random-force case
(with a=1.0 and =0.5).

The asymptotic behavior of the mean-square displace-
ment for a particle moving solely under the influence of
the random force is given by (x2)~1¢3 [8], a relation rem-
iniscent of the classic Richardson expression for turbulent
diffusion [9). This provides the fundamental scaling rela-
tion between time and distance to be used throughout this
paper. In the general case when y=0, we expect {x?)
~1t3for t <1y, and {x D ~1 for 1>, with 1, ~1/7.

The conventional approaches to investigate reaction ki-
netics are through the study of the survival probability of
particles in the presence of stationary sinks, and the study
of the reaction rate and residual concentrations of each
species of particles in the reaction A +B— C. We begin
by calculating the survival probability of a particle placed
at random within a system of linear dimension L with ab-
sorbing boundary conditions. We find that the survival
probability decays exponentially in time:

S. (1) ~exp(—c t/L¥3) . 2)

Numerical tests of this relation are shown in Fig. 1. The
average time (1) for the walker to get trapped scales with
the size of the system as

()~L3, 3)

which is the same scaling law as for the mean-square dis-
placement of the particle.

From S;(t), we can estimate the survival probability
for independent particles placed in a system of randomly
distributed traps with concentration ¢. The probability to
have a trap-free region of volume L? is p.(L)~(l
— o) =expl—L?In(1 —¢)|]. Hence the average sur-
vival probability is

S()~ f()mSL(t)p(.(L)d"L. (4a)
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FIG. 1. (a) Semilogarithmic plot of the survival probability
for a particle moving under a random force in a d=1 system
with L=1000 (&) and L =2500 (+) for absorbing boundary
conditions. (b) Linear plot of the absolute value of the loga-
rithm of S(¢) as a function of +** in order to test our result
(4b) for d=1.

The dominant contribution to the integral comes from
values ¢ /L **~PBL“, where B is the constant |In(1 —¢)|.
Thus the dominant term in S(¢) is given by

3d/(3d+2)] , (4b)

where ¢ is a constant. The exponent 3d/(3d +2) of Eq.
(4b) is quite different from that for a random walker in
the diffusion-limited regime, which is d/(d+2) [5]; in
particular, for d=1 the exponent is 2 so the survival
probability is much smaller than the diffusion-limited re-
sult which has exponent L.

To test the result of Eq. (4b), we perform simulations
for the case d=1 [3]. Figure 1(b) shows the logarithm of
S(1) as a function of 1 ¥°. The straight-line behavior sup-
ports the prediction of Eq. (4).

Next we consider the simple irreversible chemical reac-
tion in which the reactants move and react on contact.
Previously such systems have been simulated under the
assumption that the reactants move only by diffusion.
For such systems, the decay of concentration with time is

S(t)~expl—cat
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strongly affected by the initial fluctuations in the local
concentrations of the reactants. Here we investigate what
happens to the reaction kinetics when the dynamics of the
reactants is dominated by random forces.

We study the reaction 4 + B— C, assuming that when
an A4 and a B particle meet they instantly and irreversibly
combine to form an inert species C. We treat two
different initial configurations of the reactants: (i) 4 and
B particles are randomly distributed, as may be expected
in a homogeneous system; and (ii) the 4 and B particles
are initially separated in space, so they react in a “reac-
tion zone” as would be the case in an inhomogeneous sys-
tem. In particular, the experiments by Koo, Li, and Ko-
pelman [10] were done with these initial conditions.

Case (i).— Initially each site either is occupied by an A4
or a B particle (with equal probability) or is empty.
Within a region of linear dimension L the average num-
ber of particles of either species is proportional to L9, and
the fluctuations in this quantity are proportional to L/2.
Therefore, within this region there will be an excess of
one of the reactants, say, the A4 particles, and at large
time the concentration of these particles will be given by

ca()~L972pd—yp —42, (5)

To express this relation as a function of time we use the
scaling relation for the length covered by a moving parti-
cle L~ Substituting in Eq. (5) we get

cat) ~p 738 (6)

suggesting that the “critical dimension” may be § since
1/t is the fastest possible decay under these initial condi-
tions, obtained by ignoring the spatial fluctuations in the
system. In the diffusion-limited regime, under the same
initial conditions, the concentration decay is ¢4 (1) ~t ~'/4
(1,21

To test the prediction of (6), we carry out simulations
for the case d=1. Figure 2 shows the time evolution
c4(t) of the concentration of A particles, for systems of
different lengths. Our results fully support the above ar-
guments.

Case (ii).—Next consider a d=1 system of size L
where initially each reactant (A4 or B) fills uniformly half
of the system. Under these conditions, the reactions take
place only in a localized region around the interface of
the two species. This region is called the reaction front,
and it is ““‘marked” by the presence of the inert and im-
mobile C particles. We define a rate of reaction R as the
number of C particles produced per unit time. We find
that in the random-force-dominated case Rgri~1t'"2 as
opposed to the diffusion-limited situation for which
RopL~1 ~ ' at long times [10-12]. These results can be
understood in a simple way by noticing that the total
number of reactions up to time r must be proportional to
the mean number N of particles that can reach the inter-
face. Since the particles are initially uniformly distribut-
ed, then N~¢&(t), where £(¢) is the characteristic dis-



VOLUME 68, NUMBER 12

PHYSICAL REVIEW LETTERS

23 MARCH 1992

100 .

10 50 100 500

t
FIG. 2. Log-log plot of the residual concentration of one of
the reactants as a function of time for case (i), homogeneous in-
itial conditions, for different system sizes: L =250 (+), 500
(0), 1000 (O), and 5000 (®). The plateau at large ¢ reflects
the fuctuations in initial concentrations due to finite-size
effects.

tance traveled by a particle up to time ¢, E~1¥% in our
case, whereas £~ 12 for the diffusion-limited case. Then
using the fact that R =9N/d¢ immediately leads to the
scaling expressions for R in both cases.

We also study the spatial distribution of C particles as
a function of time. Until now studies have been limited
to the scaling properties of the width and the height of
this distribution in the diffusion-limited case, and there is
still debate on the values of the exponents [10-13]; thus
in order to compare the effects of the different dynamics
we investigate the reaction fronts for both cases.

We find that the integral in time of the reaction front
c(x,t) has the form

1G.0= [ cGerdi'—1' Pexp(=|x 17, ()

where a and B are the exponents related to the width and
the height of the distribution, respectively, and x is mea-
sured from the position of the original interface. The ex-
ponential form of Eq. (7) is inferred from Figs. 3(a) and
3(b) and was used to estimate the exponents for both
cases. For the pure diffusion case, we find that a=0.30
+0.01 and $=0.80*0.02; while in the random-force-
dominated case we obtain ¢=1.00%£0.01 and 8=0.50
% 0.02. Our exponents for the diffusion-limited case are
in close agreement with the values obtained by Cornell,
Droz, and Chopard [13] by direct measurements of the
height and the width of the reaction front in cellular au-
tomata simulations. These values should be valid for
d=1 systems and are different from those obtained
through the “mean-field” formalism of Galfi and Racz
[11], which is expected to be valid in higher dimensions.
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FIG. 3. Semilogarithmic plot of /(x,t) defined in Eq. (7) for
a d=1 system in (a) the random-force-dominated regime, with
L =1000 and ¢ =100, and (b) the diffusion-limited regime, with
L =1000 and r=1000.

We note that for both the random-force-dominated and
the diffusion-limited regimes, the values of the exponents
are consistent with the expected scaling relation obtained
from R ~ (width) x (height) [11-13].

In conclusion, we find that the reaction kinetics change
drastically from the high damping unit (diffusion-limited
regime) to the low damping limit (random-force-
dominated regime), and we find expressions for the sur-
vival probability, residual concentrations, and reaction
rates in the low damping limit. We also find that the
functional forms of the reaction front for both the
diffusion-limited and the random-force-dominated cases
are exponential in the distance, and from these forms we
are able to estimate the exponents of the width and
height for both cases.
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