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Abstract

We apply methods and concepts of statistical physics to the study of economic organizations.
We identify robust, universal, characteristics of the time evolution of economic organizations.
Speci/cally, we /nd the existence of scaling laws describing the growth of the size of these
organizations. We study a model assuming a complex evolving internal structure of an organi-
zation that is able to reproduce many of the empirical /ndings. c© 2001 Elsevier Science B.V.
All rights reserved.
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1. Introduction

At one time, it was imagined that “scale-free” phenomena are relevant to only a
fairly narrow slice of physical phenomena [1,2]. However, the range of systems that
apparently display power law and hence scale-invariant correlations has increased dra-
matically in recent years, ranging from base pair correlations in non-coding DNA [3,4],
lung in=ation [5], plaque aggregation in Alzeihmer’s disease [6–8], and interbeat in-
tervals of the human heart [9–15] to complex systems involving large numbers of
interacting subunits that display “free will”, such as ecologic food webs [16–18], city
growth [19–21], network formation [22–24], stock price =uctuations [25–32] and cur-
rency exchange =uctuations [33].
We have recently shown that scale invariance holds for economic organizations

[34–38]. Namely, we found that the distributions of growth rates for both business
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/rms and the gross domestic product (GDP) of entire countries are described by the
same functional form and that the standard deviation of the distribution depends on
organization size as a power law. Our goal is to bring to bear on these problems con-
cepts and methods of statistical physics. Speci/cally, we present a stochastic model
that is able to reproduce the empirical /ndings and makes further predictions about the
internal structure of economic organizations.
The remainder of this paper is organized as follows. Section describes our /nding

of scaling and universality in social systems. Section 3 describes our model. Section 4
presents some concluding remarks.

2. Scaling and universality in the growth of economic organizations

In the study of physical systems, the scaling properties of =uctuations in the output
of a system often yield information regarding the underlying processes responsible for
the observed macroscopic behavior [1,2,39,40]. With that in mind, we analyzed the
=uctuations in the growth rates of diGerent economic organizations.

2.1. Empirical results for business 2rms

In collaboration with an economist, Michael A. Salinger of Boston University, we
investigated the growth dynamics of US business /rms. A classic problem in industrial
organizations is the size distribution of business /rms [41–44]. For some time, it was
assumed that /rm size obeyed a rank-size law [45–51], that is, that the distribution
of sizes decays a power law of the size. In Fig. 1(a), we show the distribution of
log-sizes for US business /rms, it is clear that the distribution has a fast decaying tail,
inconsistent with a power law dependence.
We next consider the annual growth rate—that is to say, the =uctuation—of a /rm’s

size,

g(t) ≡ log
(
S(t + 1)
S(t)

)
; (1)

where S(t) and S(t + 1) are the sales in US dollars of a given /rm in the years t
and t + 1, respectively. We expect that the statistical properties of the growth rate g
depend on S, since it is natural that the magnitude of the =uctuations g will decrease
with S. Therefore, we partition the /rms into bins according to their sales—the size
of the /rm. Fig. 1(b) shows a log-linear plot of the probability distribution of growth
rates for three sizes. In such a plot, a Gaussian distribution has a parabolic shape.
It is apparent from the graph that the distributions are not Gaussian. Furthermore, it
appears from the graph that the form of the distributions for the diGerent sizes are
similar. Indeed, Fig. 1(b) suggests that the conditional probability density, p(g|S), has
the same functional form, with diGerent widths, for all S.



L.A.N. Amaral et al. / Physica A 299 (2001) 127–136 129

Fig. 1. (a) Histogram of the sales S for publicly-traded manufacturing companies (with standard industrial
classi/cation index of 2000–3999) in the US for each of the years in the 1974–1993 period. All the
values for sales were adjusted to 1987 dollars by the GDP price de=ator. Also shown (solid circles) is the
average over the 20 years. It is visually apparent that the distribution is approximately stable over the period.
(b) Probability density p(r|S) of the growth rate r for all publicly-traded US manufacturing /rms in the 1994
Compustat database with Standard Industrial Classi/cation index of 2000–3999. The distribution represents
all annual growth rates observed in the 19-yr period 1974–1993. We show the data for three diGerent bins
of initial sales. The solid lines are exponential /ts to the empirical data close to the peak. We can see that
the wings are somewhat “fatter” than what is predicted by an exponential dependence. (c) Scaled probability
density pscal ≡ �p(g|S) as a function of the scaled growth rate gscal ≡ [g− Mg]=�. The values were rescaled
using the measured values of Mg and �. All the data collapse upon the universal curve pscal =f(−|gscal|).
(d) Standard deviation of the 1-year growth rates � for diGerent de/nitions of the size of a company as a
function of the initial values. We /nd that � ∼ S−
. The straight lines are guides for the eye and have
slopes 0:19.

To test if the conditional distribution of growth rates has a functional form indepen-
dent of the size of the company, we plot the scaled quantities:

�(S)p
(

g
�(S)

∣∣∣∣ S
)

vs:
g
�(S)

: (2)

Fig. 1(c) shows that the scaled conditional probability distributions “collapse” onto
a single curve [40], suggesting that p(g|S) follows a universal scaling form

p(g|S) ∼ 1
�(S)

f
(

g
�(S)

)
; (3)

where the function f is independent of S.
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Next we calculate the standard deviation �(S) of the distribution of growth rates as a
function of S. Fig. 1(d) demonstrates that �(S) decays as a power law

�(S) ∼ S−
 ; (4)

with 
=0:19 ± 0:05. One may ask if these results are only valid when the size of
the /rm is de/ned to be the sales. To test this possibility, we perform similar anal-
ysis de/ning the size of the /rms as (i) the number of employees, (ii) the assets,
(iii) cost of goods sold (COGS), and (iv) plants, property and equipment (PPE).
Fig. 1(d) con/rms that consistent results are obtained for all the above measures.
These results are intriguing for a number of reasons. First, we /nd consistent results

for a set of /rms belonging to a wide range of industries (from services in the bin for
the smallest /rms to oil and car companies in the bin for the largest /rms). Second, we
/nd consistent results for quite diGerent types of measures of a /rms’ size, some such
as COGS, PPE, assets and number of employees are input measures, while sales is
an output measure. These two points suggest that universality is present in the growth
dynamics of business /rms. Third, we /nd power law scaling in the width of the
distribution of growth rates, an unexpectedly “simple” results that suggests that simple
mechanisms may explain our observations.

2.2. Empirical results for countries

In collaboration with another economist, David Canning from The Queen’s College
in Dublin and Harvard University, we extended the analysis described in the previous
subsections to the economy of countries. As earlier, we /rst consider the distribution
of sizes S of a countries economy. Usually, the size of an economy is quanti/ed by the
gross domestic product (GDP) of the country [52]. Here, we detrend S by the world
average growth rate, calculated for all the countries and years in our database [53].
We /nd that p(log S) is consistent with a Gaussian distribution, implying that P(S)
may be a log-normal. We also /nd that the distribution P(S) does not depend on the
time period studied.
Next, we calculate the distribution of annual growth rate g, as de/ned in Eq. (1),

where S(t) and S(t + 1) are the GDP of a country in the years t and t + 1. As for
business /rms, we expect that the statistical properties of the growth rate g depend
on S, since it is natural that the magnitude of the =uctuations g will decrease with S.
Therefore, we partition the countries into bins according to their GDPs. We calculate
the probability distribution of growth rates for three GDP sizes (small, medium and
large) and /nd that the distributions are not Gaussian. Furthermore, as for business
/rms, the form of the distributions for the diGerent sizes are consistent.
To test if the conditional distribution of growth rates has a functional form indepen-

dent of the size of the company, we plot the scaled quantities (2). Fig. 2(a) shows
that the scaled conditional probability distributions “collapse” onto a single curve [40],
suggesting that p(g|S) follows the universal functional form (3).
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Fig. 2. (a) Probability density function of annual growth rate for two subgroups with diGerent ranges of G,
where G denotes the GDP detrended by the average yearly growth rate. The entire database was divided
into three groups: 6:9 × 1076G¡ 2:4 × 109, 2:496G¡ 2:2 × 1010, and 2:2 × 10106G¡ 7:6 × 1011,
and the /gure shows the distributions for the smallest and largest groups. We consider only three subgroups
in order to have enough events in each bin for the determination of the distribution. We plot the scaled
probability density function, �(S)p(g=�(S)|S), of the scaled annual growth rate, (g− Mg)=�(S) to show that
all data collapse onto a single curve. (b) Standard deviation �(S) of the distribution of annual growth rates
as a function of S, together with a power law /t (obtained by a least square linear /t to the logarithm of �
vs the logarithm of S). The slope of the line gives the exponent 
, with 
=0:15. We show the calculated
standard deviation for two procedures: (i) for each individual country over the 42-yr period of the data, and
(ii) for binned data according to size of GDP.

We next calculate the standard deviation �(S) of the distribution of growth rates as
a function of S. Fig. 2(b) demonstrates that �(S) decays as a power law, �(S) ∼ S−
,
with 
=0:15± 0:05. We have also con/rmed these results by a maximum-likelihood
analysis [54]. In particular, we /nd that the log-likelihood of p(g|S) being described
by an exponential distribution—as opposed to a Gaussian distribution—is of the order
of e600 to 1. Similarly, we test the log-likelihood of � obeying (4). We /nd that
Eq. (4) is e130 more likely than �(G)= const, and that adding an additional nonlinear
term to (4) does not increase the log-likelihood.
Surprisingly, we /nd that the same functional form appears to describe the probability

distribution of annual growth rates for both the GDP of countries and the sales of /rms;
cf. Fig. 2(a). This result strongly suggests that universality, as de/ned in statistical
physics, holds for the growth dynamics of economic organizations.

3. Modeling the growth dynamics of economic organizations

We next address the question of how to interpret our empirical results. We /rst
note that an organization, such as a business /rm, will comprise several subunits—the
divisions of a /rm. A reasonable zero-order approximation [55] is that the size of
the diGerent subunits comprising a /rm will grow independently. Hence, we may view
the growth of the size of each /rm as the sum of the independent growth of subunits
with diGerent sizes. A model incorporating these assumptions [56] was recently
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Fig. 3. Schematic representation of the time evolution of the size and structure of a /rm. We choose Smin = 2,
and pf =pa =1:0. The /rst column of full squares represents the size �i of each division, and the second
column represents the corresponding change in size P�i . Empty squares represent negative growth and full
squares positive growth. We assume, for this example, that the /rm has initially one division of size �1 = 25,
represented by a 5×5 square. At t=1, division 1 grows by P�1 = 3. A new division, numbered 2, is created
because P�1¿Smin = 2, and the size of division 1 remains unchanged, so for t=2, the /rm has 2 divisions
with sizes �1 = 25 and �2 = 3. Next, divisions �1 and �2 grow by 2 and −2, respectively. Division 2 is
absorbed by division 1, since otherwise its size would become �2 = 3 − 2= 1 which is smaller than Smin.
Thus, at time t=3, the /rm has only one division with size �1 = 25 + 2 + 1=28. Note that if division 1
would be absorbed, then division 2 would absorb division 1 and would then be renumbered 1. If, division
1 is absorbed and there are no more divisions left, the /rm “dies”.

proposed to describe the scale-invariant growth dynamics of diGerent types of organi-
zations.
Our model dynamically builds a diversi/ed, multi-divisional structure, reproducing

the fact that a typical /rm passes through a series of changes in organization, grow-
ing from a single-product, single-plant /rm, to a multi-divisional, multi-product /rm
[57]. The model reproduces a number of empirical observations for a wide range of
values of parameters and provides a possible explanation for the robustness of the em-
pirical results. Indeed, our model may oGer a generic approach to explain power law
distributions in other complex systems.
The model, illustrated in Fig. 3, is de/ned as follows. A /rm is created with a single

division, which has a size �1(t=0). The size of a /rm S ≡ ∑
i �i(t) at time t is the

sum of the sizes of the divisions �i(t) comprising the /rm. We de/ne a minimum size
Smin below which a /rm would not be economically viable, due to the competition
between /rms; Smin is a characteristic of the industry in which the /rm operates. We
assume that the size of each division i of the /rm evolves according to a random
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multiplicative process [41–51]. We de/ne

P�i(t) ≡ �i(t) �i(t) ; (5)

where �i(t) is a Gaussian-distributed random variable with zero mean and standard
deviation V independent of �i. The divisions evolve as follows:

(i) If P�i(t)¡Smin, division i evolves by changing its size, and �i(t + 1)= �i(t) +
P�i(t). If its size becomes smaller than Smin—i.e. if �i(t + 1)¡Smin—then with
probability pa, division i is “absorbed” by division 1. Thus, the parameter pa
re=ects the fact that when a division becomes very small it will no longer be
viable due to the competition between /rms.

(ii) If P�i(t)¿Smin, then with probability (1−pf), we set �i(t+1)= �i(t)+P�i(t).
With a probability pf, division i does not change its size—so that �i(t+1)= �i(t)—
and an altogether new division j is created with size �j(t+1)=P�i(t). Thus, the
parameter pf re=ects the tendency to diversify: the larger is pf, the more likely
it is that new divisions are created.

The present model rests on a small number of assumptions. The three key assump-
tions are: (i) /rms tend to organize themselves into multiple divisions once they achieve
a certain size. This assumption holds for many modern corporations [57], (ii) there is
a broad distribution of minimum scales in the economy. This assumption has also been
veri/ed empirically [58], (iii) growth rates of diGerent divisions are independent of one
another. For an economist, the third is the stronger of the these assumptions. However,
a recent study by John Sutton of the London School of Economics /nds empirical
support for this hypothesis [55].

4. Discussion

There are two features of our results that are perhaps surprising. First, although /rms
in our model consist of independent divisions, we do not /nd 
=1=2. One can derive
an expression for 
 in terms of the parameters of the model [56]


=
w

2(v+ w)
: (6)

To gain intuition on the results predicted by this expression, consider two represen-
tative cases: (1) v=0, which implies that 
=1=2, and (2) v=w, which implies that

=w=(4w)= 1=4. So, for a wide range of the values of the model’s parameters, we
/nd v¿w implying that 
 is remarkably close to the empirical value 
 ≈ 0:2.
Second, the distribution p(g|S) is not Gaussian but “tent” shaped. We /nd this result

arises from the integration of nearly-Gaussian distributions of the growth rates over the
distribution of Smin.
An additional feature of the model that is of interest is the fact that it makes pre-

dictions regarding the internal structure of the organizations. Speci/cally, the model
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predicts that the number of subunits comprising an organization and the typical size of
these subunits obey scaling laws [56]. We have recently con/rmed these predictions
for the growth dynamic of R& D expenditures at US universities [37].
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