Application of Statistical Physics Methods to Quantify the Aging Process in the Brain

João Ricardo Santos

Advisor: H. E. Stanley

Boston University

September 09, 2013

Scientific Question?

We recognize the symptoms of aging

BUT what happens during aging?

Background

- No general decrease in number of neurons detected [Peters *et al.*, Cereb. Cortex **8** (1998)]
- One observed change is that <u>myelinated nerve fibers</u> decrease in number [Peters *et al.*, J. Comp. Neurol. **518** (2010)]
 - Little decrease in white matter volume
- Observed changes of myelinated nerve fibers correlate with cognitive decline

Fornix of the Brain

Why is Fornix interesting?

Fornix (latin: arch)

- C-shaped bundle of nerve fibers
- Crucial in cognitive functions (memory)

Scientific Objective

- Study effects of aging in the fornix
 - Describe myelinated axons
 - Differences between young and old subjects
 - Macroscopic changes (e.g. axon density)
 - Morphological changes (e.g. area, shape)
 - Structural changes (e.g. disorder)

Subjects

- 6 female specimens (rhesus monkey)
 - 3 young females
 - aged 6 to 8 years
 - 3 old females
 - aged 25 to 32 years

67 slides analyzed from Dr. Peters collection

EM image of the fornix of a young subject

Results

1. Axon Recognition Algorithm

- 2. Macroscopic Changes
- 3. Morphological Changes
- 4. Structural Changes

1. Axon Recognition Algorithm

[development by Will Morrison]

Recognition via contrast between convex light region (axon) surrounded by dark region (myelin sheath)

- Smooth image
- Threshold image
- Find edges
- Reduce false positives
 - area cut, eccentricity cut, uniformity cut, convex curvature cut
- Manual check

1. Axon Recognition Algorithm

Axon Recognition examples:

9024 recognized axons in 67 slides

Results

1. Axon Recognition Algorithm

2. Macroscopic Changes

a) Axon Density

- 3. Morphological Changes
- 4. Structural Changes

2a) Myelinated Axon Density

Young and Old specimens are statistically distinguishable

Results

- 1. Axon Recognition Algorithm
- 2. Macroscopic Changes

3. Morphological Changes

- a) Axon Area
- **b) Shape Parameters**
- 4. Structural Changes

3a) Axon Area Distribution

3b) Shape Parameters

[calculations by César Comin]

- Other shape parameters are also not enough to distinguish between age groups
 - Perimeter

- Circularity =
$$4\pi \frac{Area}{Perimeter^2}$$
 For a circle, circularity=1
- Diameter - Largest distance between 2 contour points
- Curvature
 r Curvature of point P is
inverse of radius of the circle
fitting the curve at point P

Results

- 1. Axon Recognition Algorithm
- 2. Macroscopic Changes
- 3. Morphological Changes

4. Structural Changes

- a) Hexagonality Index
- **b) Nearest Neighbor Distances**
- c) Axon Area Correlations

4. Order and Regularity

How to quantify regularity?

a) compare to a regular lattice \rightarrow Hexagonality Index

- b) study behavior of nearest neighbors
- c) measure regularity of axon areas

4a) Hexagonality Index (HI)

[Costa et al., Phys. Rev. E 73 (2006)]

How ordered is a structure?

 Compare angles to nearest neighbors to those of a triangular lattice

$$HI_{k} = \frac{1}{\sum_{i=1}^{N_{k}} |\theta_{i} - \frac{\pi}{3}| + 1}$$

HI = 1 for a perfect triangular lattice

 $HI \rightarrow 0$ for more disordered systems

4a) Hexagonality index

[calculations by Chester Curme]

4a) Hexagonality index

4b) Nearest Neighbor Distances

Measure spatial order through mean distance to nearest neighbor [Clark et al., Ecology 35 (1954)]

4b) Nearest Neighbor Distances

4c) Axon Area Autocorrelation

Measure similarity of axon areas in function of distance:

• Autocorrelation > 0 \rightarrow axon areas are similar

• Autocorrelation < 0 \rightarrow axons have opposed areas

4c) Axon Area Autocorrelation

4c) Axon Area Autocorrelation

Conclusions

- Myelinated axons have regularity
- Older subjects have more disordered systems
 - Regularity of myelinated axons in the fornix decreases with age

Hypothesis: Loss of regularity is reason for decrease in cognitive functions

Future work

1) Feature selection

• determine which parameters that, *taken together*, can better separate the 2 age groups

2) Modeling of aging process

- compare to random cases
- 3) Study changes in the myelin sheath

1) Feature Selection

Taking ONLY these 2 features: 90% accuracy

Questions?