
BOSTON UNIVERSITY

GRADUATE SCHOOL OF ARTS AND SCIENCES

Dissertation

STATISTICAL APPROACHES TO UNDERSTANDING

PHYSIOLOGICAL FLUCTUATIONS

by

KUN HU

B.S., Zhongshan University, 1995
M.A., University of Rhode Island, 1999

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

2004



Approved by

First Reader
H. Eugene Stanley, Ph.D.
University Professor,
Professor of Physics

Second Reader
Claudio Rebbi, Ph.D.
Professor of Physics



Contents

I Introduction 1

II Effect of Nonstationary on Scaling Behavior 2

1 Effect of Trends on Detrended Fluctuation Analysis 3

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Introduction to this chapter . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Noise with linear trends . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 DFA-1 on noise with a linear trend . . . . . . . . . . . . . . . 7

1.3.2 DFA-2 on noise with a linear trend . . . . . . . . . . . . . . . 12

1.4 Noise with sinusoidal trend . . . . . . . . . . . . . . . . . . . . . . . 12

1.4.1 DFA-1 on sinusoidal trend . . . . . . . . . . . . . . . . . . . . 14

1.4.2 DFA-1 on noise with sinusoidal trend . . . . . . . . . . . . . . 15

1.4.3 Higher order DFA on pure sinusoidal trend . . . . . . . . . . . 22

1.5 Noise with Power-law trends . . . . . . . . . . . . . . . . . . . . . . . 24

1.5.1 Dependence of FP(n) on the power λ . . . . . . . . . . . . . . 26

1.5.2 Dependence of FP(n) on the order � of DFA . . . . . . . . . . 28

1.5.3 Dependence of FP(n) on the signal length Nmax . . . . . . . . 31

1.5.4 Combined effect on FP(n) of λ, � and Nmax . . . . . . . . . . . 33

1.6 Conclusion and Summary . . . . . . . . . . . . . . . . . . . . . . . . 34

iv



2 Effect of nonstationarities on detrended fluctuation analysis 36

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2 Introduction to this chapter . . . . . . . . . . . . . . . . . . . . . . . 37

2.3 Signals with random spikes . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4 Signals with segments removed . . . . . . . . . . . . . . . . . . . . . 44

2.5 Signals with different local standard deviations . . . . . . . . . . . . . 47

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

III Human Motor Activity 52

3 Non-Random Fluctuations and Multi-scale Dynamics of Human Ac-

tivity 53

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Introduction to this Chapter . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Intrinsic patterns in activity . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.1 Common distribution form . . . . . . . . . . . . . . . . . . . . 57

3.3.2 Search for ultradian rhythms . . . . . . . . . . . . . . . . . . . 60

3.3.3 Long-range power-law correlations . . . . . . . . . . . . . . . . 61

3.3.4 Nonlinear Fourier phase information . . . . . . . . . . . . . . 63

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

IV Circadian Rhythms 69

4 Circadian Rhythms 70

4.1 Introduction to this chapter . . . . . . . . . . . . . . . . . . . . . . . 70

4.1.1 Effect of circadian factors and day/night changes in behaviors

on the pattern of cardiovascular risk . . . . . . . . . . . . . . 70

v



4.1.2 Experimental Methods of Assessment of Intrinsic Circadian

Factors Versus Behavioral Factors . . . . . . . . . . . . . . . . 72

4.1.3 Concepts and Approaches from Statistical Physics . . . . . . . 73

4.2 Circadian effect on heart dynamics . . . . . . . . . . . . . . . . . . . 74

4.2.1 Static properties . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2.2 Dynamic properties . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3 Circadian effect on human motor activity . . . . . . . . . . . . . . . . 80

4.3.1 Static properties . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.2 Dynamic properties . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

V Cerebral Control Mechanism 84

5 Synchronization Patterns in Cerebral Blood Flow and Peripheral

Blood Pressure under Minor Stroke 85

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 Introduction to this chapter . . . . . . . . . . . . . . . . . . . . . . . 86

5.3 Experimental design and data acquisition . . . . . . . . . . . . . . . . 87

5.3.1 Study groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3.2 Experimental protocol . . . . . . . . . . . . . . . . . . . . . . 87

5.3.3 Data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.5.1 Time domain . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.5.2 Synchronization technique . . . . . . . . . . . . . . . . . . . . 93

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

vi



VI Appendix 99

.1 Detrened fluctuation analysis . . . . . . . . . . . . . . . . . . . . . . 100

.2 Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

.3 Superposition law for DFA . . . . . . . . . . . . . . . . . . . . . . . . 107

.4 DFA-1 on linear trend . . . . . . . . . . . . . . . . . . . . . . . . . . 108

.5 DFA-1 on Quadratic trend . . . . . . . . . . . . . . . . . . . . . . . . 109

.6 Protocol and Measurements . . . . . . . . . . . . . . . . . . . . . . . 111

.6.1 Establishing a Regular Sleep / Wake / Exercise Baseline Schedule111

.6.2 Laboratory Environment for Forced Desynchrony and Con-

stant Routine Protocols . . . . . . . . . . . . . . . . . . . . . 112

.6.3 Data Collection, Storage and Transfer . . . . . . . . . . . . . 114

.7 Circadian Methods of Data Analysis . . . . . . . . . . . . . . . . . . 116

VII References 118

VIII Curriculum Vitae 138

vii



List of Tables

Table 1.1 The crossover exponent θ for different values of the correlation

exponents α. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Table 1.2 The crossover exponents θT1 and θA1 for different α. . . . . . . 20

Table 1.3 The crossover exponents θT3 and θA3 for different values of for α. 21

Table 0.1 Estimated scaling exponent of noise from R/S analysis. . . . . 104

Table 0.2 Estimated scaling exponent of noise from DFA-1 . . . . . . . 104

viii



List of Figures

Fig. 1.1 Scaling behavior of noise with a linear trend. . . . . . . . . . . . 8

Fig. 1.2 Comparison of the detrended fluctuation function for noise Yη(i)

and for noise with linear trend YηL(i) at different scales. . . . . . . . . 9

Fig. 1.3 The crossover in the scaling behavior for noise with a linear trend. 10

Fig. 1.4 DFA-2 results of Fη(n) for noise and FηL(n) for the noise with a

linear trend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Fig. 1.5 Root mean square fluctuation function FS(n) for sinusoidal func-

tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Fig. 1.6 Effect of a sinusoidal trend on scaling behavior of noise. . . . . . 16

Fig. 1.7 Comparison of the detrended fluctuation function for noise and

noise with sinusoidal trend. . . . . . . . . . . . . . . . . . . . . . . . 17

Fig. 1.8 Dependence of the three crossovers in FηS(n) for noise with a

sinusoidal trend (Fig. 1.6) on the period T , and amplitude AS of the

sinusoidal trend. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Fig. 1.9 Comparison of the results of different order DFA on a sinusoidal

trend. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Fig. 1.10 Crossover behavior of the rms fluctuation function for correlated

noise with a superimposed power-law trend. . . . . . . . . . . . . . . 25

Fig. 1.11 Scaling behavior of rms fluctuation function for power-law trends. 27

ix



Fig. 1.12 Effect of higher order DFA-� on the rms fluctuation function for

correlated noise with superimposed power-law trend. . . . . . . . . . 30

Fig. 1.13 Dependence of the rms fluctuation function for power-law trend

on the length of the trend . . . . . . . . . . . . . . . . . . . . . . . . 32

Fig. 2.1 Effects of random spikes on the scaling behavior of stationary

correlated signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Fig. 2.2 Effects of the “cutting” procedure on the scaling behavior of

stationary signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Fig. 2.3 Scaling behavior of nonstationary signals with different local

standard deviation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Fig. 3.1 Human activity signals. . . . . . . . . . . . . . . . . . . . . . . . 55

Fig. 3.2 Common functional form for the probability distributions of ac-

tivity values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Fig. 3.3 Scale-invariant distribution form. . . . . . . . . . . . . . . . . . 59

Fig. 3.4 Group average power spectral densities for all three protocols. . 60

Fig. 3.5 Long-range fractal correlations and nonlinearity in activity fluc-

tuations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Fig. 3.6 Stability of scaling and nonlinear features. . . . . . . . . . . . . 64

Fig. 3.7 Comparison of left and right wrist activity. . . . . . . . . . . . . 66

Fig. 3.8 Turning table test for the Actiwatch device. . . . . . . . . . . . . 67

Fig. 4.1 Frequency of myocardial infarctions. . . . . . . . . . . . . . . . . 70

Fig. 4.2 Endogenous circadian variations. . . . . . . . . . . . . . . . . . 75

Fig. 4.3 Endogenous circadian rhythm in the scale-invariant dynamic

properties of cardiac control. . . . . . . . . . . . . . . . . . . . . . . . 77

Fig. 4.4 Nonlinear markers of cardiac risk mediated by circadian cycles. . 79

Fig. 4.5 Circadian variation in wrist activity double plotted. . . . . . . . 81

x



Fig. 4.6 Variations of correlation and nonlinear properties of wrist activ-

ity at different circadian phase. . . . . . . . . . . . . . . . . . . . . . 82

Fig. 5.1 Right BFV, left BFV, and BP signals during tilt stage. . . . . . 89

Fig. 5.2 Mean values of BFV and BP signals during four experimental

stages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Fig. 5.3 The ratio of the BFV and BP mean values. . . . . . . . . . . . . 92

Fig. 5.4 Instantaneous Hilbert amplitude. . . . . . . . . . . . . . . . . . 94

Fig. 5.5 Cross-correlation function of the Hilbert phase increment for the

BFV and BP signals . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Fig. 6 Detrended fluctuation analysis (DFA) method. . . . . . . . . . . 100

Fig. 7 Scaling behavior of correlated noise. . . . . . . . . . . . . . . . . 102

Fig. 8 The estimated α from local fit. . . . . . . . . . . . . . . . . . . . 105

Fig. 9 The starting point of good fit region for DFA-1 and R/S analysis. 106

Fig. 10 (Top) Raster plot of 10-day Forced Desynchrony protocol where

the solid black bars represent scheduled sleep opportunity. (Bottom)

Raster plot of a constant routine study where the solid black bars

represent scheduled sleep opportunity. . . . . . . . . . . . . . . . . . . 112

xi



Part I

Introduction

1



Part II

Effect of Nonstationary on Scaling

Behavior

2



Chapter 1

Effect of Trends on Detrended

Fluctuation Analysis

1.1 Overview

Detrended fluctuation analysis (DFA) is a scaling analysis method used to estimate

long-range power-law correlation exponents in noisy signals. Many noisy signals

in real systems display trends, so that the scaling results obtained from the DFA

method become difficult to analyze. We systematically study the effects of three

types of trends — linear, periodic, and power-law trends, and offer examples where

these trends are likely to occur in real data. We compare the difference between the

scaling results for artificially generated correlated noise and correlated noise with

a trend, and study how trends lead to the appearance of crossovers in the scaling

behavior. We find that crossovers result from the competition between the scaling of

the noise and the “apparent” scaling of the trend. We study how the characteristics

of these crossovers depend on (i) the slope of the linear trend; (ii) the amplitude and

period of the periodic trend; (iii) the amplitude and power of the power-law trend

and (iv) the length as well as the correlation properties of the noise. Surprisingly, we

3
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find that the crossovers in the scaling of noisy signals with trends also follow scaling

laws — i.e. long-range power-law dependence of the position of the crossover on the

parameters of the trends. We show that the DFA result of noise with a trend can be

exactly determined by the superposition of the separate results of the DFA on the

noise and on the trend, assuming that the noise and the trend are not correlated.

If this superposition rule is not followed, this is an indication that the noise and

the superimposed trend are not independent, so that removing the trend could lead

to changes in the correlation properties of the noise. In addition, we show how to

use DFA appropriately to minimize the effects of trends, and how to recognize if a

crossover indicates indeed a transition from one type to a different type of underlying

correlation, or the crossover is due to a trend without any transition in the dynamical

properties of the noise.

1.2 Introduction to this chapter

Many physical and biological systems exhibit complex behavior characterized by

long-range power-law correlations. Traditional approaches such as the power-spectrum

and correlation analysis are not suited to accurately quantify long-range correlations

in non-stationary signals — e.g. signals exhibiting fluctuations along polynomial

trends. Detrended fluctuation analysis (DFA)[4–7] is a scaling analysis method pro-

viding a simple quantitative parameter — the scaling exponent α — to represent

the correlation properties of a signal. The advantages of DFA over many methods

are that it permits the detection of long-range correlations embedded in seemingly

non-stationary time series, and also avoids the spurious detection of apparent long-

range correlations that are artifact of non-stationarity. In the past few years, more

than 100 publications have utilized the DFA as method of correlation analysis, and

have uncovered long-range power-law correlations in many research fields such as

cardiac dynamics[8–12, ?–12, 14–25, ?–25], bioinformatics[4, 5, 27–37], economics[38–
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50], meteorology[51–53], material science[54], ethology[55] etc. Furthermore, the

DFA method may help identify different states of the same system according to its

different scaling behaviors — e.g. the scaling exponent α for heart inter-beat intervals

is different for healthy and sick individuals[17, 19, 20, 56].

The correct interpretation of the scaling results obtained by the DFA method

is crucial for understanding the intrinsic dynamics of the systems under study. In

fact, for all systems where the DFA method was applied, there are many issues

that remain unexplained. One of the common challenges is that the correlation

exponent is not always a constant (independent of scale) and crossovers often exist

— i.e. change of the scaling exponent α for different range of scales[19, ?, ?]. A

crossover usually can arise from a change in the correlation properties of the signal

at different time or space scales, or can often arise from trends in the data. In this

chapter, we systematically study how different types of trends affect the apparent

scaling behavior of long-range correlated signals. The existence of trends in times

series generated by physical or biological systems is so common that it is almost

unavoidable. For example, the number of particles emitted by a radiation source in

an unit time has a trend of decreasing because the source becomes weaker[57, 58]; the

density of air due to gravity has a trend at different altitude [59]; the air temperature

in different geographic locations and the water flow of rivers have a periodic trend

due to seasonal changes[52, 53, 60–62]; the occurrence rate of earthquakes in certain

area has trend in different time period[63]. An immediate problem facing researchers

applying scaling analysis to time series is whether trends in data arise from external

conditions, having little to do with the intrinsic dynamics of the system generating

noisy fluctuating data. In this case, a possible approach is to first recognize and filter

out the trends before we attempt to quantify correlations in the noise. Alternatively,

trends may arise from the intrinsic dynamics of the system, rather than being an

epiphenomenon of external conditions, and thus may be correlated with the noisy

fluctuations generated by the system. In this case, careful considerations should be
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given if trends should be filtered out when estimating correlations in the noise, since

such ”intrinsic” trends may be related to the local properties of the noisy fluctuations.

Here we study the origin and the properties of crossovers in the scaling behavior

of noisy signals, by applying the DFA method first on correlated noise and then

on noise with trends, and comparing the difference in the scaling results. To this

end, we generate artificial time series — anticorrelated, white and correlated noise

with standard deviation equal to one — using the modified Fourier filtering method

introduced by Makse et al. [67]. We consider the case when the trend is independent

of the local properties of the noise (external trend). We find that the scaling behavior

of noise with a trend is a superposition of the scaling of the noise and the apparent

scaling of the trend, and we derive analytical relations based on the DFA, which we

call “superposition rule”. We show how this “superposition rule” can be used to

determine if the trends are independent of the noisy fluctuation in real data, and if

filtering these trends out will no affect the scaling properties of the data.

The outline of this chapter is as follows. In Sec. 1.3, we consider the effect of a

linear trend and we present an analytic derivation of the apparent scaling behavior of

a linear trend in Appendix .4. In Sec. 1.4, we study a periodic trend, and in Sec. 1.5

the effect of power-law trend. We systematically study all resulting crossovers, their

conditions of existence and their typical characteristics associated with the different

types of trends. In addition, we also show how to use DFA appropriately to minimize

or even eliminate the effects of those trends in cases that trends are not choices of

the study, that is, trends do not reflect the dynamics of the system but are caused

by some “irrelevant” background. Finally, Sec. 1.6 contains a summary.
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1.3 Noise with linear trends

First we consider the simplest case: correlated noise with a linear trend. A linear

trend

u(i) = ALi (1.1)

is characterized by only one variable — the slope of the trend, AL. For convenience,

we denote the rms fluctuation function for noise without trends by Fη(n), linear

trends by FL(n), and noise with a linear trend by FηL(n).

1.3.1 DFA-1 on noise with a linear trend

Using the algorithm of Makse [67], we generate correlated noise with standard devia-

tion one, with a given correlation property characterized by a given scaling exponent

α. We apply DFA-1 to quantify the correlation properties of the noise and find that

only in certain good fit region the rms fluctuation function Fη(n) can be approxi-

mated by a power-law function

Fη(n) = b0n
α (1.2)

where b0 is a parameter independent of the scale n. We find that the good fit

region depends on the correlation exponent α [see Appendix .2]. We also derive

analytically the rms fluctuation function for linear trend only for DFA-1 and find

that [see Appendix .4]

FL(n) = k0ALnαL (1.3)

where k0 is a constant independent of the length of trend Nmax, of the box size n

and of the slope of the trend AL. We obtain αL = 2.

Next we apply the DFA-1 method to the superposition of a linear trend with

correlated noise and we compare the rms fluctuation function FηL(n) with Fη(n) [see

Fig.1.1]. We observe a crossover in FηL(n) at scale n = n×. For n < n×, the behavior
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Fig. 1.1. We observe crossover behavior of the root mean square fluctua-
tion function FηL(n) for noise (of length Nmax = 217 and correlation expo-
nent α = 0.1) with superposed linear trends of slope AL = 2−16, 2−12, 2−8.
For comparison, we show Fη(n) for the noise (thick solid line) and FL(n)
for the linear trends (dot-dashed line) (Eq.(1.3)). The results show that
a crossover at a scale n× for FηL(n). For n < n×, the noise domi-
nates and FηL(n) ≈ Fη(n). For n > n×, the linear trend dominates and
FηL(n) ≈ FL(n). Note that the crossover scale n× increases when the slope
AL of the trend decreases.

of FηL(n) is very close to the behavior of Fη(n), while for n > n×, the behavior of

FηL(n) is very close to the behavior of FL(n). A similar crossover behavior is also

observed in the scaling of the well-studied biased random walk [65, 66]. It is known

that the crossover in the biased random walk is due to the competition of the unbiased

random walk and the bias [see Fig.5.3 of [66]]. We illustrate this observation in

Fig. 1.2, where the detrended fluctuation functions (Eq. (5)) of the correlated noise,

Yη(i), and of the noise with a linear trend, YηL(i) are shown. For the box size n < n×

as shown in Fig. 1.2(a) and (b), YηL(i) ≈ Yη(i). For n > n× as shown in Fig. 1.2(c)
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Fig. 1.2. (a) and (c) are Yη for noise with α = 0.1; (b) and (d) are YηL for
the same noise with a linear trend with slope AL = 2−12 (the crossover scale
n× = 320 see Fig. 1.1). (a) (b) for scales n < n× the effect of the trend is
not pronounced and Yη ≈ YηL (i.e. Yη � YL); (c)(d) for scales n > n×, the
linear trend is dominant and Yη � YηL.

and (d), YηL(i) has distinguishable quadratic background significantly different from

Yη(i). This quadratic background is due to the integration of the linear trend within

the DFA procedure and represents the detrended fluctuation function YL of the linear

trend. These relations between the detrended fluctuation functions Y (i) at different

time scales n explain the crossover in the scaling behavior of FηL(n): from very close

to Fη(n) to very close to FL(n) (observed in Fig.1.1).

The experimental results presented in Figs.1.1 and 1.2 suggest that the rms fluc-

tuation function for a signal which is a superposition of a correlated noise and a
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linear trend can be expressed as:

[FηL(n)]2 = [FL(n)]2 + [Fη(n)]2 (1.4)

We provide an analytic derivation of this relation in Appendix .3, where we show

that Eq.(1.4) holds for the superposition of any two independent signals — in this

particular case noise and a linear trend. We call this relation the “superposition

rule”. This rule helps us understand how the competition between the contribution

of the noise and the trend to the rms fluctuation function FηL(n) at different scales

n leads to appearance of crossovers [65].

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

AL

10
1

10
2

10
3

n x

α=0.1
α=0.3
α=0.5
α=0.7
α=0.9

θ

DFA−1

Fig. 1.3. The crossover n× of FηL(n) for noise with a linear trend. We
determine the crossover scale n× based on the difference ∆ between log Fη

(noise) and log FηL (noise with a linear trend). The scale for which ∆ = 0.05
is the estimated crossover scale n×. For any given correlation exponent α of
the noise, the crossover scale n× exhibits a long-range power-law behavior
n× ∼ (AL)θ, where the crossover exponent θ is a function of α [see Eq.(1.5)
and Table 1.1].

Next, we ask how the crossover scale n× depends on: (i) the slope of the linear

trend AL, (ii) the scaling exponent α of the noise, and (iii) the length of the signal
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Nmax. Surprisingly, we find that for noise with any given correlation exponent α

the crossover scale n× itself follows a power-law scaling relation over several decades:

n× ∼ (AL)θ (see Fig. 1.3). We find that in this scaling relation, the crossover exponent

θ is negative and its value depends on the correlation exponent α of the noise — the

magnitude of θ decreases when α increases. We present the values of the “crossover

exponent” θ for different correlation exponents α in Table 1.1.

Table 1.1. The values of θ obtained from our simulations [Fig. 1.3] are in
good agreement with the analytical prediction −1/(2 − α) [Eq. (1.5)]. Note
that −1/(2 − α) are not always exactly equal to θ because Fη(n) in simula-
tions is not a perfect simple power-law function and the way we determine
numerically n× is just approximated.

α θ −1/(2 − α)

0.1 -0.54 -0.53

0.3 -0.58 -0.59

0.5 -0.65 -0.67

0.7 -0.74 -0.77

0.9 -0.89 -0.91

To understand how the crossover scale depends on the correlation exponent α of

the noise we employ the superposition rule [Eq.(1.4)] and estimate n× as the intercept

between Fη(n) and FL(n). From the Eqs. (1.2) and (1.3), we obtain the following

dependence of n× on α:

n× =

(
AL

k0

b0

)1/(α−αL)

=

(
AL

k0

b0

)1/(α−2)

(1.5)

This analytical calculation for the crossover exponent −1/(αL − α) is in a good

agreement with the observed values of θ obtained from our simulations [see Fig.1.3

and Table 1.1].
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Finally, since the FL(n) does not depend on Nmax as we show in Eq.(1.3) and

in Appendix .4, we find that n× does not depend on Nmax. This is a special case

for linear trends and does not always hold for higher order polynomial trends [see

Appendix .5].

1.3.2 DFA-2 on noise with a linear trend

Application of the DFA-2 method to noisy signals without any polynomial trends

leads to scaling results identical to the scaling obtained from the DFA-1 method, with

the exception of some vertical shift to lower values for the rms fluctuation function

Fη(n) [see Appendix .2]. However, for signals which are a superposition of correlated

noise and a linear trend, in contrast to the DFA-1 results presented in Fig. 1.1,

FηL(n) obtained from DFA exhibits no crossovers, and is exactly equal to the rms

fluctuation function Fη(n) obtained from DFA-2 for correlated noise without trend

(see Fig. 1.4). These results indicate that a linear trend has no effect on the scaling

obtained from DFA-2. The reason for this is that by design the DFA-2 method

filters out linear trends, i.e. YL(i) = 0 (Eq.( 5)) and thus FηL(n) = Fη(n) due to the

superposition rule (Eq. (1.4)). For the same reason, polynomial trends of order lower

than � superimposed on correlated noise will have no effect on the scaling properties

of the noise when DFA-� is applied. Therefore, our results confirm that the DFA

method is a reliable tool to accurately quantify correlations in noisy signals embedded

in polynomial trends. Moreover, the reported scaling and crossover features of F (n)

can be used to determine the order of polynomial trends present in the data.

1.4 Noise with sinusoidal trend

In this section, we study the effect of sinusoidal trends on the scaling properties of

noisy signals. For a signal which is a superposition of correlated noise and sinusoidal

trend, we find that based on the superposition rule (Appendix .3) the DFA rms
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integrated linear trend can be perfectly filtered out in DFA-2, thus YL(i) = 0
from Eq.(5). We note, that to estimate accurately the correlation exponents
one has to choose an optimal range of scales n, where F (n) is fitted. For
details see Appendix .2.

fluctuation function can be expressed as

[FηS(n)]2 = [Fη(n)]2 + [FS(n)]2 , (1.6)

where FηS(n) is the rms fluctuation function of noise with a sinusoidal trend, and

FS(n) is for the sinusoidal trend. First we consider the application of DFA-1 to a

sinusoidal trend. Next we study the scaling behavior and the features of crossovers

in FηS(n) for the superposition of correlated noise and sinusoidal trend employing

the superposition rule [Eq.(1.6)]. At the end of this section, we discuss the results

obtained from higher order DFA.
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1.4.1 DFA-1 on sinusoidal trend

Given a sinusoidal trend u(i) = AS sin (2πi/T ) (i = 1, ..., Nmax), where AS is the

amplitude of the signal and T is the period, we find that the rms fluctuation function

FS(n) does not depend on the length of the signal Nmax, and has the same shape

for different amplitudes and different periods [Fig. 1.5]. We find a crossover at scale

corresponding to the period of the sinusoidal trend

n2× ≈ T, (1.7)

and does not depend on the amplitude AS. We call this crossover n2× for convenience,

as we will see later. For n < n2×, the rms fluctuation FS(n) exhibits an apparent
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Fig. 1.5. We consider sinusoidal functions of length Nmax = 217 with
different amplitude AS and period T . All curves exhibit a crossover at n2× ≈
T/2, with a slope αS = 2 for n < n2×, and a flat region for n > n2×. There
are some spurious singularities at n = j T

2 (j is a positive integer) shown by
the spikes.
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scaling with the same exponent as FL(n) for the linear trend [see Eq. (1.3)]:

FS(n) = k1
AS

T
nαS (1.8)

where k1 is a constant independent of the length Nmax, of the period T and the

amplitude AS of the sinusoidal signal, and of the box size n. As for the linear trend

[Eq.(1.3)], we obtain αS = 2 because at small scales (box size n) the sinusoidal

function is dominated by a linear term. For n > n2×, due to the periodic property

of the sinusoidal trend, FS(n) is a constant independent of the scale n:

FS(n) =
1

2
√

2π
AS · T. (1.9)

The period T and the amplitude AS also affects the vertical shift of FS(n) in both

regions. We note that in Eqs.(1.8) and (1.9), FS(n) is proportional to the amplitude

AS, a behavior which is also observed for the linear trend [Eq. (1.3)].

1.4.2 DFA-1 on noise with sinusoidal trend

In this section, we study how the sinusoidal trend affects the scaling behavior of noise

with different type of correlations. We apply the DFA-1 method to a signal which

is a superposition of correlated noise with a sinusoidal trend. We observe that there

are typically three crossovers in the rms fluctuation FηS(n) at characteristic scales

denoted by n1×, n2× and n3× [Fig. 1.6]. These three crossovers divide FηS(n) into

four regions, as shown in Fig. 1.6(a) (the third crossover cannot be seen in Fig. 1.6(b)

because its scale n3× is greater than the length of the signal). We find that the first

and third crossovers at scales n1× and n3× respectively [see Fig. 1.6] result from the

competition between the effects on FηS(n) of the sinusoidal signal and the correlated

noise. For n < n1× (region I) and n > n3× (region IV), we find that the noise has

the dominating effect (Fη(n) > FS(n)), so the behavior of FηS(n) is very close to the

behavior of Fη(n) [Eq. (1.6)]. For n1× < n < n2× (region II) and n2× < n < n3×
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(region III) the sinusoidal trend dominates (FS(n) > Fη(n)), thus the behavior of

FηS(n) is close to FS(n) [see Fig. 1.6 and Fig. 1.7].
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Fig. 1.6. We observe crossover behavior of the root mean square fluctuation
function FηS(n) (circles) for correlated noise with of length Nmax = 217)
with a superposed sinusoidal function characterized by period T = 128 and
amplitude AS = 2. The rms fluctuation function Fη(n) for noise (thick line)
and FS(n) for the sinusoidal trend (thin line) are shown for comparison. (a)
FηS(n) for correlated noise with α = 0.9. (b) FηS(n) for anticorrelated noise
with α = 0.9. There are three crossovers in FηS(n), at scales n1×, n2× and
n3× (the third crossover can not be seen in (b) because it occurs at scale
larger than the length of the signal). For n < n1× and n > n3×, the noise
dominates and FηS(n) ≈ Fη(n) while for n1× < n < n3×, the sinusoidal
trend dominates and FηS(n) ≈ FS(n). The crossovers at n1× and n3× are
due to the competition between the correlated noise and the sinusoidal trend
[see Fig. 1.7], while the crossover at n2× relates only to the period T of the
sinusoidal [Eq. (1.7)].

To better understand why there are different regions in the behavior of FηS(n),

we consider the detrended fluctuation function [Eq. (5) and Appendix .3] of the

correlated noise Yη(i), and of the noise with sinusoidal trend YηS. In Fig. 1.7 we

compare Yη(i) and YηS(i) for anticorrelated and correlated noise in the four different

regions. For very small scales n < n1×, the effect of the sinusoidal trend is not

pronounced, YηS(i) ≈ Yη(i), indicating that in this scale region the signal can be

considered as noise fluctuating around a constant trend which is filtered out by the

DFA-1 procedure [Fig. 1.7(a)(b)]. Note, that the behavior of YηS [Fig. 1.7(b)] is
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Fig. 1.7. Comparison of the detrended fluctuation function for noise,
Yη(i) and noise with sinusoidal trend, YηS(i) in four regions as shown in
Fig. 1.6. The same signals as in Fig. 1.6 are used. Panels (a)-(f) correspond
to Fig. 1.6(b) for anticorrelated noise with exponent α = 0.1, and panels (g)-
(h) correspond to the Fig. 1.6(a) for correlated noise with exponent α = 0.9.
(a)-(b) For all scales n < n1×, the effect of the trend is not pronounced
and YηS(i) ≈ Yη(i) leading to FηS(n) ≈ Fη(n) (Fig. 1.6(a)). (c)(d) For
n2× > n > n1×, the trend is dominant, YηS(i) � Yη(i) and FηS(n) ≈ FS(n).
Since n2× ≈ T/2 (Eq. (1.7)), the scale n < T/2 and the sinusoidal behavior
can be approximated as a linear trend. This explains the quadratic back-
ground in YηS(i) (d) [see Fig. 1.2(c)(d)]. (e)(f) For n2× < n < n3× (i.e.
n � T/2), the sinusoidal trend again dominates — YηS(i) is periodic func-
tion with period T . (g)(h) for n > n3×, the effect of the noise is dominant
and the scaling of FηS follows the scaling of Fη (Fig. 1.6(a)).
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identical to the behavior of YηL [Fig. 1.2(b)], since both a sinusoidal with a large

period T and a linear trend with small slope AL can be well approximated by a

constant trend for n < n1×. For small scales n1× < n < n2× (region II), we find that

there is a dominant quadratic background for YηS(i) [Fig. 1.7(d)]. This quadratic

background is due to the integration procedure in DFA-1, and is represented by

the detrended fluctuation function of the sinusoidal trend YS(i). It is similar to

the quadratic background observed for linear trend YηL(i) [Fig. 1.2(d)] — i.e. for

n1× < n < n2× the sinusoidal trend behaves as a linear trend and YS(i) ≈ YL(i).

Thus in region II the “linear trend” effect of the sinusoidal is dominant, YS > Yη,

which leads to FηS(n) ≈ FS(n). This explains also why FηS(n) for n < n2× (Fig. 1.6)

exhibits crossover behavior similar to the one of FηL(n) observed for noise with a

linear trend. For n2× < n < n3× (region III) the sinusoidal behavior is strongly

pronounced [Fig. 1.7(f)], YS(i) � Yη(i), and YηS(i) ≈ YS(i) changes periodically

with period equal to the period of the sinusoidal trend T . Since YηS(i) is bounded

between a minimum and a maximum value, FηS(n) cannot increase and exhibits a

flat region (Fig. 1.6). At very large scales, n > n3×, the noise effect is again dominant

(YS(i) remains bounded, while Yη grows when increasing the scale) which leads to

FηS(n) ≈ Fη(n), and a scaling behavior corresponding to the scaling of the correlated

noise.

First, we consider n1×. Surprisingly, we find that for noise with any given corre-

lation exponent α the crossover scale n1× exhibits long-range power-law dependence

of the period T — n1× ∼ T θT1 , and the amplitude AS — n1× ∼ (AS)
θA1 of the si-

nusoidal trend [see Fig. 1.8(a) and (b)]. We find that the ”crossover exponents” θT1

and θA1 have the same magnitude but different sign — θT1 is positive while θA1 is

negative. We also find that the magnitude of θT1 and θA1 increases for the larger

values of the correlation exponents α of the noise. We present the values of θT1 and

θA1 for different correlation exponent α in Table 1.2. To understand these power-law

relations between n1× and T , and between n1× and AS, and also how the crossover
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Fig. 1.8. (a) Power-law relation between the first crossover scale n1× and
the period T : n1× ∼ T θT1 , where θT1 is a positive crossover exponent [see
Table 1.2 and Eq. 1.10]. (b) Power-law relation between the first crossover
n1× and the amplitude of the sinusoidal trend AS: n1× ∼ AθA1

S where θA1

is a negative crossover exponent [Table 1.2 and Eq. (1.10)]. (c) The second
crossover scale n2× depends only on the period T : n2× ∼ T θT2 , where θT2 ≈
1. (d) Power-law relation between the third crossover n3× and T : n3× ∼
T θT3 . (e) Power-law relation between the third crossover n3× and AS: n3× ∼
(AS)

θA3 . We find that θA3 = θT3 [Table 1.3 and Eq. (1.11)].
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scale n1× depends on the correlation exponent α we employ the superposition rule

[Eq. 1.6] and estimate n1× analytically as the first intercept nth
1× of Fη(n) and FS(n).

From Eqs. (1.8) and (1.2), we obtain the following dependence of n1× on T , AS and

α:

n1× =

(
b0

k1

T

AS

)1/(2−α)

(1.10)

From this analytical calculation we obtain the following relation between the two

crossover exponents θT1 and θA1 and the correlation exponent α: θT1 = − θA1 = 1/(2 − α),

which is in a good agreement with the observed values of θT1, θA1 obtained from sim-

ulations [see Fig. 1.8(a) (b) and Table 1.2].

Table 1.2. θT1 and θA1 characterize the power-law dependence of crossover
scale n1× on the period T and amplitude AS obtained from simulations:
n1× ∼ T θT1 and n1× ∼ (AS)

θA1 [Fig. 1.8(a)(b)]. The values of θT1 and θA1

are in good agreement with the analytical predictions θT1 = −θA1 = 1/(2−α)
[Eq. (1.10)].

α θT1 -θA1 1/(2 − α)

0.1 0.55 0.54 0.53

0.3 0.58 0.59 0.59

0.5 0.66 0.66 0.67

0.7 0.74 0.75 0.77

0.9 0.87 0.90 0.91

Next, we consider n2×. Our analysis of the rms fluctuation function FS(n) for

the sinusoidal signal in Fig. 1.5 suggests that the crossover scale FS(n) does not

depend on the amplitude AS of the sinusoidal. The behavior of the rms fluctuation

function FηS(n) for noise with superimposed sinusoidal trend in Fig. 1.6(a) and (b)

indicates that n2× does not depend on the correlation exponent α of the noise, since

for both correlated (α = 0.9) and anticorrelated (α = 0) noise (T and AS are fixed),
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the crossover scale n2× remains unchanged. We find that n2× depends only on

the period T of the sinusoidal trend and exhibits a long-range power-law behavior

n2× ∼ T θT2 with a crossover exponent θT2 ≈ 1 (Fig. 1.8(c)) which is in agreement

with the prediction of Eq.(1.7).

Table 1.3. These two exponents characterize the power-law relations:
n3× ∼ T θT3 and n3× ∼ (AS)

θA3 [Fig. 1.8(c)(d)]. The values of θp3 and
θa3 obtained from simulations are in good agreement with the analytical
predictions θT3 = θA3 = 1/α [Eq. (1.11)].

α θT3 θA3 1/α

0.4 2.29 2.38 2.50

0.5 1.92 1.95 2.00

0.6 1.69 1.71 1.67

0.7 1.39 1.43 1.43

0.8 1.26 1.27 1.25

0.9 1.06 1.10 1.11

For the third crossover scale n3×, as for n1× we find a power-law dependence on

the period T , n3× ∼ T θT3 , and amplitude AS, n3× ∼ (AS)
θA3 ,of the sinusoidal trend

[see Fig. 1.8(d) and (e)]. However, in contrast to the n1× case, we find that the

crossover exponents θTp3 and θA3 are equal and positive with decreasing values for

increasing correlation exponents α. In Table 1.3, we present the values of these two

exponents for different correlation exponent α. To understand how the scale n3×

depends on T , AS and the correlation exponent α simultaneously, we again employ

the superposition rule [Eq. (1.6)] and estimate n3× as the second intercept nth
3× of

Fη(n) and FS(n). From Eqs. (1.9) and (1.2), we obtain the following dependence:

n3× =

(
1

2
√

2πb0

AST

)1/α

. (1.11)
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From this analytical calculation we obtain θT3 = θA3 = 1/α which is in good agree-

ment with the values of θT3 and θA3 observed from simulations [Table 1.3].

Finally, our simulations show that all three crossover scales n1×, n2× and n3× do

not depend on the length of the signal Nmax, since Fη(n) and FS(n) do not depend

on Nmax as shown in Eqs. (1.2), (1.6), (1.8), and (1.9).

1.4.3 Higher order DFA on pure sinusoidal trend

In the previous Sec. 1.4.2, we discussed how sinusoidal trends affect the scaling

behavior of correlated noise when the DFA-1 method is applied. Since DFA-1 removes

only constant trends in data, it is natural to ask how the observed scaling results

will change when we apply DFA of order � designed to remove polynomial trends

of order lower than �. In this section, we first consider the rms fluctuation FS for a

sinusoidal signal and then we study the scaling and crossover properties of FηS for

correlated noise with superimposed sinusoidal signal when higher order DFA is used.

We find that the rms fluctuation function FS does not depend on the length of

the signal Nmax, and preserves a similar shape when different order-� DFA method

is used [Fig. 1.9]. In particular, FS exhibits a crossover at a scale n2× proportional to

the period T of the sinusoidal: n2× ∼ T θT2 with θT2 ≈ 1. The crossover scale shifts

to larger values for higher order � [Fig. 1.5 and Fig. 1.9]. For the scale n < n2×, FS

exhibits an apparent scaling: FS ∼ nαS with an effective exponent αS = � + 1 .

For DFA-1, we have � = 1 and recover αS = 2 as shown in Eq. (1.8). For n > n2×,

FS(n) is a constant independent of the scale n, and of the order � of the DFA method

in agreement with Eq. (1.9).

Next, we consider FηS(n) when DFA-� with a higher order � is used. We find

that for all orders �, FηS(n) does not depend on the length of the signal Nmax and

exhibits three crossovers — at small, intermediate and large scales — similar behavior

is reported for DFA-1 in Fig. 1.6. Since the crossover at small scales, n1×, and the
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Fig. 1.9. The sinusoidal trend is given by the function 64 sin(2πi/211) and
the length of the signal is Nmax = 217. The spurious singularities (spikes)
arise from the discrete data we use for the sinusoidal function.

crossover at large scale, n3×, result from the “competition” between the scaling of

the correlated noise and the effect of the sinusoidal trend (Figs. 1.6 and 1.7), using

the superposition rule [Eq. (1.6)] we can estimate n1× and n3× as the intercepts of

Fη(n) and FS(n) for the general case of DFA-�.

For n1× we find the following dependence on the period T , amplitude AS, the

correlation exponent α of the noise, and the order � of the DFA-� method:

n1× ∼ (T/AS)
1/(�+1−α) (1.12)

For DFA-1, we have � = 1 and we recover Eq. (1.10). In addition, n1× is shifted to

larger scales when higher order DFA-� is applied, due to the fact that the value of

FS(n) decreases when � increases (αS = � + 1, see Fig. 1.9).

For the third crossover observed in FηS(n) at large scale n3× we find for all orders
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� of the DFA-� the following scaling relation:

n3× ∼ (TAS)
1/α. (1.13)

Since the scaling function Fη(n) for correlated noise shifts vertically to lower values

when higher order DFA-� is used [see the discussion in Appendix .2 and Sec. 1.5.2],

n3× exhibits a slight shift to larger scales.

For the crossover n2× in FηS(n) at FηS(n) at intermediate scales, we find: n2× ∼ T .

This relation is independent of the order � of the DFA and is identical to the relation

found for FS(n) [Eq. (1.7)]. n2× also exhibits a shift to larger scales when higher

order DFA is used [see Fig. 1.9].

The reported here features of the crossovers in FηS(n) can be used to identify

low-frequency sinusoidal trends in noisy data, and to recognize their effects on the

scaling properties of the data. This information may be useful when quantifying

correlation properties in data by means of scaling analysis.

1.5 Noise with Power-law trends

In this section we study the effect of power-law trends on the scaling properties

of noisy signals. We consider the case of correlated noise with superposed power-

law trend u(i) = APiλ, when AP is a positive constant, i = 1, ..., Nmax, and Nmax

is the length of the signal. We find that when the DFA-1 method is used, the

rms fluctuation function FηP(n) exhibits a crossover between two scaling regions

[Fig. 1.10]. This behavior results from the fact that at different scales n, either

the correlated noise or the power-law trend is dominant, and can be predicted by

employing the superposition rule:

[FηP(n)]2 = [Fη(n)]2 + [FP(n)]2 , (1.14)

where Fη(n) and FP(n) are the rms fluctuation function of noise and the power-law

trend respectively, and FηP(n) is the rms fluctuation function for the superposition
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Fig. 1.10. Crossover behavior of the rms fluctuation function for correlated
noise with a superimposed power-law trend. FηP(n) (circles) is for correlated
noise (of length Nmax = 217) with a superimposed power-law trend u(i) =
APiλ. The rms fluctuation function Fη(n) for noise (solid line) and the rms
fluctuation function FP(n) (dash line) are also shown for comparison. DFA-1
method is used. (a) FηP(n) for noise with correlation exponent αλ = 0.9, and
power-law trend with amplitude AP = 1000/(Nmax)0.4 and positive power
λ = 0.4; (b) FηP(n) for Brownian noise (integrated white noise, αλ = 1.5),
and power-law trend with amplitude AP = 0.01/ (Nmax)−0.7 and negative
power λ = −0.7. Note, that although in both cases there is a “similar”
crossover behavior for FηP(n), the results in (a) and (b) represent completely
opposite situations: while in (a) the power-law trend with positive power λ
dominates the scaling of FηP(n) at large scales, in (b) the power-law trend
with negative power λ dominates the scaling at small scales, with arrow we
indicate in (b) a weak crossover in FP(n) (dashed lines) at small scales for
negative power λ.

of the noise and the power-law trend. Since the behavior of Fη(n) is known (Eq. (1.2)

and Appendix .2), we can understand the features of FηP(n), if we know how FP(n)

depends on the characteristics of the power-law trend. We note that the scaling

behavior of FηP(n) displayed in Fig. 1.10(a) is to some extent similar to the behavior

of the rms fluctuation function FηL(n) for correlated noise with a linear trend [Fig. 1.1]

— e.g. the noise is dominant at small scales n, while the trend is dominant at large

scales. However, the behavior FP(n) is more complex than that of FL(n) for the

linear trend, since the effective exponent αλ for FP(n) can depend on the power λ
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of the power-law trend. In particular, for negative values of λ, FP(n) can become

dominated at small scales (Fig. 1.10(b)) while Fη(n) dominates at large scales — a

situation completely opposite of noise with linear trend (Fig. 1.1) or with power-law

trend with positive values for the power λ. Moreover, FP(n) can exhibit crossover

behavior at small scales [Fig. 1.10(b)] for negative λ which is not observed for positive

λ. In addition FP(n) depends on the order � of the DFA method and the length Nmax

of the signal. We discuss the scaling features of the power-law trends in the following

three subsections.

1.5.1 Dependence of FP(n) on the power λ

First we study how the rms fluctuation function FP(n) for a power-law trend u(i) =

APiλ depends on the power λ. We find that

FP(n) ∼ APnαλ , (1.15)

where αλ is the effective exponent for the power-law trend. For positive λ we observe

no crossovers in FP(n) (Fig. 1.10(a)). However, for negative λ there is a crossover in

FP(n) at small scales n (Fig. 1.10(b)), and we find that this crossover becomes even

more pronounced with decreasing λ or increasing the order � of the DFA method,

and is also shifted to larger scales [Fig. 1.11(a)].

Next, we study how the effective exponent αλ for FP(n) depends on the value of

the power λ for the power-law trend. We examine the scaling of FP(n) and estimate

αλ for −4 < λ < 4. In the cases when FP(n) exhibits a crossover, in order to obtain

αλ we fit the range of larger scales to the right of the crossover. We find that for any

order � of the DFA-� method there are three regions with different relations between

αλ and λ [Fig. 1.11(b)]:

(i) αλ ≈ � + 1 for λ > � − 0.5 (region I);

(ii) αλ ≈ λ + 1.5 for −1.5 ≤ λ ≤ � − 0.5 (region II);
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Fig. 1.11. Scaling behavior of rms fluctuation function FP(n) for power-law
trends.The trend is given by u(i) ∼ iλ, where i = 1, ..., Nmax and Nmax = 217

is the length of the signal. (a) For λ < 0, FP(n) exhibits crossover at small
scales which is more pronounced with increasing the order � of DFA-� and
decreasing the value of λ. Such crossover is not observed for λ > 0 when
FP(n) ∼ nαλ for all scales n [see Fig. 1.10(a)]. (b) Dependence of the effective
exponent αλ on the power λ for different order � = 1, 2, 3 of the DFA method.
Three regions are observed depending on the order � of the DFA: region I
(λ > � − 0.5), where αλ ≈ � + 1; region II (−1.5 < λ < � − 0.5), where
αλ = λ + 1.5; region III (λ < −1.5), where αλ ≈ 0. We note that for
integer values of the power λ = 0, 1, ..., �− 1, where � is the order of DFA we
used, there is no scaling for FP(n) and αλ is not defined, as indicated by the
arrows. (c) Asymptotic behavior near integer values of λ. FP(n) is plotted
for λ → 1 when DFA-2 is used. Even for λ − 1 = 10−6, we observe at large
scales n a region with an effective exponent αλ ≈ 2.5, This region is shifted
to infinitely large scales when λ = 1.
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(iii) αλ ≈ 0 for λ < −1.5 (region III).

Note, that for integer values of the power λ (λ = 0, 1, ...,m − 1), i.e. polynomial

trends of order m − 1, the DFA-� method of order � > m − 1 (� is also an integer)

leads to FP(n) ≈ 0, since DFA-� is designed to remove polynomial trends. Thus for

a integer values of the power λ there is no scaling and the effective exponent αλ is

not defined if a DFA-� method of order � > λ is used [Fig. 1.11]. However, it is of

interest to examine the asymptotic behavior of the scaling of FP(n) when the value

of the power λ is close to an integer. In particular , we consider how the scaling of

FP(n) obtained from DFA-2 method changes when λ → 1 [Fig. 1.11(c)]. Surprisingly,

we find that even though the values of FP(n) are very small at large scales, there is

a scaling for FP(n) with a smooth convergence of the effective exponent αλ → 2.5

when λ → 1, according to the dependence αλ ≈ λ + 1.5 established for region II

[Fig. 1.11(b)]. At smaller scales there is a flat region which is due to the fact that

the fluctuation function Y (i) (Eq. (5)) is smaller than the precision of the numerical

simulation.

1.5.2 Dependence of FP(n) on the order � of DFA

Another factor that affects the rms fluctuation function of the power-law trend FP(n),

is the order � of the DFA method used. We first take into account the following.

(1) For integer values of the power λ, the power-law trend u(i) = APiλ is a poly-

nomial trend which can be perfectly filtered out by the DFA method of order

� > λ, and as discussed in Sec. 1.3.2 and Sec. 1.5.1 [see Fig. 1.11(b) and (c)],

there is no scaling for FP(n). Therefore, in this section we consider only non-

integer values of λ.

(2) For a given value of the power λ, the effective exponent αλ can take different

values depending on the order � of the DFA method we use [see Fig. 1.11] —
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e.g. for fixed λ > � − 0.5, αλ ≈ � + 1. Therefore, in this section, we consider

only the case when λ < � − 0.5 (Region II and III).

Since higher order DFA-� provides a better fit for the data, the fluctuation func-

tion Y (i) (Eq. (5)) decreases with increasing order �. This leads to a vertical shift

to smaller values of the rms fluctuation function F (n) (Eq. (6)). Such a vertical

shift is observed for the rms fluctuation function Fη(n) for correlated noise (see Ap-

pendix .2), as well as for the rms fluctuation function of power-law trend FP(n). Here

we ask how this vertical shift in Fη(n) and FP(n) depends on the order � of the DFA

method, and if this shift has different properties for Fη(n) compared to FP(n). This

information can help identify power-law trends in noisy data, and can be used to

differentiate crossovers separating scaling regions with different types of correlations,

and crossovers which are due to effects of power-law trends.

We consider correlated noise with a superposed power-law trend, where the

crossover in FηP(n) at large scales n results from the dominant effect of the power-

law trend — FηP(n) ≈ FP(n) (Eq. (1.14) and Fig. 1.10(a)). We choose the power

λ < 0.5, a range where for all orders � of the DFA method the effective exponent

αλ of FP(n) remains the same — i.e. αλ = λ + 1.5 (region II in Fig. 1.11(b)). For

a superposition of an anticorrelated noise and power-law trend with λ = 0.4, we

observe a crossover in the scaling behavior of FηP(n), from a scaling region charac-

terized by the correlation exponent α = 0.1 of the noise, where FηP(n) ≈ Fη(n), to

a region characterized by an effective exponent αλ = 1.9, where FηP(n) ≈ FP(n),

for all orders � = 1, 2, 3 of the DFA-� method [Fig. 1.12(a)]. We also find that the

crossover of FηP(n) shifts to larger scales when the order � of DFA-� increases, and

that there is a vertical shift of FηP(n) to lower values. This vertical shift in FηP(n)

at large scales, where FηP(n) = FP(n), appears to be different in magnitude when

different order � of the DFA-� method is used [Fig. 1.12(a)]. We also observe a less

pronounced vertical shift at small scales where FηP(n) ≈ Fη(n).
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Fig. 1.12. Effect of higher order DFA-� on the rms fluctuation function
FηP(n) for correlated noise with superimposed power-law trend. (a) FηP(n)
for anticorrelated noise with correlation exponent α = 0.1 and a power-law
u(i) = APiλ, where AP = 25/ (Nmax)0.4, Nmax = 217 and λ = 0.4. Results
for different order � = 1, 2, 3 of the DFA method show (i) a clear crossover
from a region at small scales where the noise dominates FηP(n) ≈ Fη(n), to a
region at larger scales where the power-law trend dominates FηP(n) ≈ FP(n),
and (ii) a vertical shift ∆ in FηP with increasing �. (b) Dependence of the
vertical shift ∆ in the rms fluctuation function FP(n) for power-law trend
on the order � of DFA-� for different values of λ: ∆ ∼ �τ(λ). We define the
vertical shift ∆ as the y-intercept of FP(n): ∆ ≡ FP(n = 1). Note, that
we consider only non-integer values for λ and that we consider the region
λ < � − 0.5. Thus, for all values of λ the minimal order � that can be used
in the DFA method is � > λ + 0.5. e.g. for λ = 1.6 the minimal order of the
DFA that can be used is � = 3 (for details see Fig. 1.11(b)). (c) Dependence
of τ on the power λ (error bars indicate the regression error for the fits of
∆(l) in (b)). (d) Comparison of τ(αλ) for FP(n) and τ(α) for Fη(n). Faster
decay of τ(αλ) indicates larger vertical shifts for FP(n) compared to Fη(n)
with increasing order � of the DFA-�.
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Next, we ask how these vertical shifts depend on the order � of DFA-�. We define

the vertical shift ∆ as the y-intercept of FP(n): ∆ ≡ FP(n = 1). We find that the

vertical shift ∆ in FP(n) for power-law trend follows a power law: ∆ ∼ �τ(λ). We

tested this relation for orders up to � = 10, and we find that it holds for different

values of the power λ of the power-law trend [Fig. 1.12(b)]. Using Eq. (1.15) we can

write: FP(n)/FP(n = 1) = nαλ , i.e. FP(n) ∼ FP(n = 1). Since FP(n = 1) ≡ ∆ ∼
�τ(λ) [Fig. 1.12(b)], we find that:

FP(n) ∼ �τ(λ). (1.16)

We also find that the exponent τ is negative and is a decreasing function of the power

λ [Fig. 1.12(c)]. Because the effective exponent αλ which characterizes FP(n) depends

on the power λ [see Fig. 1.11(b)], we can express the exponent τ as a function of αλ

as we show in Fig. 1.12(d). This representation can help us compare the behavior

of the vertical shift ∆ in FP(n) with the shift in Fη(n). For correlated noise with

different correlation exponent α, we observe a similar power-law relation between the

vertical shift in Fη(n) and the order � of DFA-�: ∆ ∼ �τ(α), where τ is also a negative

exponent which decreases with α. In Fig. 1.12(d) we compare τ(αλ) for FP(n) with

τ(α) for Fη(n), and find that for any αλ = α, τ(αλ) < τ(α). This difference between

the vertical shift for correlated noise and for a power-law trend can be utilized to

recognize effects of power-law trends on the scaling properties of data.

1.5.3 Dependence of FP(n) on the signal length Nmax

Here, we study how the rms fluctuation function FP(n) depends on the length Nmax

of the power-law signal u(i) = APiλ (i = 1, ..., Nmax). We find that there is a

vertical shift in FP(n) with increasing Nmax [Fig. 1.13(a)]. We observe that when

doubling the length Nmax of the signal the vertical shift in FP(n), which we define as

F 2Nmax
P /FNmax

P , remains the same, independent of the value of Nmax. This suggests
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Fig. 1.13. Dependence of the rms fluctuation function FP(n) for power-law
trend on the length of the trend Nmax. (a) A vertical shift is observed in
FP(n) for different values of Nmax — N1max and N2max. The figure shows
that the vertical shift , defined as FN1max

P (n)/FN2max
P (n), does not depend on

Nmax but only on the ratio N1max/N2max, suggesting that FP(n) ∼ (Nmax)γ .
(b) Dependence of the vertical shift on the power λ. For λ < �−0.5 (� is the
order of DFA), we find a flat (constant) region characterized with effective
exponent γ = −0.5 and negative vertical shift. For λ > � − 0.5, we find an
exponential dependence of the vertical shift on λ. In this region, γ = λ − �,
and the vertical shift can be negative (if λ < �) or positive (if λ > �). the
slope of − log10

(
F 2Nmax

P (n)/FNmax
P (n)

)
vs. λ is − log10 2 due to doubling

the length of the signal Nmax. This slope changes to − log10 m when Nmax is
increased m times while γ remains independent of Nmax. For λ = � there is
no vertical shift, as marked with ×. Arrows indicate integer values of λ < �,
for which values the DFA-� method filters out completely the power-law
trend and FP = 0.

a power-law dependence of FP(n) on the length of the signal:

FP(n) ∼ (Nmax)
γ , (1.17)

where γ is an effective scaling exponent.

Next, we ask if the vertical shift depends on the power λ of the power-law trend.

When doubling the length Nmax of the signal, we find that for λ < � − 0.5, where

� is the order of the DFA method, the vertical shift is a constant independent of λ

[Fig. 1.13(b)]. Since the value of the vertical shift when doubling the length Nmax



33

is 2γ (from Eq. (1.17)), the results in Fig. 1.13(b) show that γ is independent of λ

when λ < � − 0.5, and that − log 2γ ≈ −0.15, i.e. the effective exponent γ ≈ −0.5.

For λ > � − 0.5, when doubling the length Nmax of the signal, we find that the

vertical shift 2γ exhibits the following dependence on λ: − log10 2γ = log10 2λ−�, and

thus the effective exponent γ depends on λ — γ = λ− �. For positive integer values

of λ (λ = �), we find that γ = 0, and there is no shift in FP(n), suggesting that

FP(n) does not depend on the length Nmax of the signal, when DFA of order � is

used [Fig. 1.13]. Finally, we note that depending on the effective exponent γ, i.e. on

the order � of the DFA method and the value of the power λ, the vertical shift in the

rms fluctuation function FP(n) for power-law trend can be positive (λ > �), negative

(λ < �), or zero (λ = �).

1.5.4 Combined effect on FP(n) of λ, � and Nmax

We have seen that, taking into account the effects of the power λ (Eq. (1.15)),

the order � of DFA-� (Eq. (1.16)) and the effect of the length of the signal Nmax

(Eq. (1.17)), we reach the following expression for the rms fluctuation function FP(n)

for a power-law trend u(i) = APiλ:

FP(n) ∼ AP · nαλ · �τ(λ) · (Nmax)
γ(λ) , (1.18)

For correlated noise, the rms fluctuation function Fη(n) depends on the box size n

(Eq. (1.2)) and on the order � of DFA-� (Sec. 1.5.2 and Fig. 1.12(a), (d)), and does

not depend on the length of the signal Nmax. Thus we have the following expression

for Fη(n)

Fη(n) ∼ nα�τ(α), (1.19)

To estimate the crossover scale n× observed in the apparent scaling of FηP(n)

for a correlated noise superposed with a power-law trend [Fig. 1.10(a), (b) and
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Fig. 1.12(a)], we employ the superposition rule (Eq. (1.14)). From Eq. (1.18) and

Eq. (1.19), we obtain n× as the intercept between FP(n) and Fη(n):

n× ∼
[
Alτ(λ)−τ(α) (Nmax)

γ
]1/(α−αλ)

. (1.20)

To test the validity of this result, we consider the case of correlated noise with a

linear trend. For the case of a linear trend (λ = 1) when DFA-1 (� = 1) is applied,

we have αλ = 2 (see Appendix .4 and Sec. 1.5.1, Fig. 1.11(b)). Since in this case

λ = � = 1 > � − 0.5 we have γ = λ − � = 0 (see Sec.1.5.3 Fig. 1.13(b)), and from

Eq. (1.20) we recover Eq. (1.5).

1.6 Conclusion and Summary

In this chapter we show that the DFA method performs better than the standard

R/S analysis to quantify the scaling behavior of noisy signals for a wide range of

correlations, and we estimate the range of scales where the performance of the DFA

method is optimal. We consider different types of trends superposed on correlated

noise, and study how these trends affect the scaling behavior of the noise. We

demonstrate that there is a competition between a trend and a noise, and that this

competition can lead to crossovers in the scaling. We investigate the features of these

crossovers, their dependence on the properties of the noise and the superposed trend.

Surprisingly, we find that crossovers which are a result of trends can exhibit power-

law dependences on the parameters of the trends. We show that these crossover

phenomena can be explained by the superposition of the separate results of the DFA

method on the noise and on the trend, assuming that the noise and the trend are

not correlated, and that the scaling properties of the noise and the apparent scaling

behavior of the trend are known. Our work may provide some help to differentiate

between different types of crossovers — e.g. crossovers which separate scaling regions

with different correlation properties may differ from crossovers which are an artifact
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of trends. The results we present here could be useful for identifying the presence of

trends and to accurately interpret correlation properties of noisy data.



Chapter 2

Effect of nonstationarities on

detrended fluctuation analysis

2.1 Overview

Detrended fluctuation analysis (DFA) is a scaling analysis method used to quantify

long-range power-law correlations in signals. Many physical and biological signals

are “noisy”, heterogeneous and exhibit different types of nonstationarities, which can

affect the correlation properties of these signals. We systematically study the effects

of three types of nonstationarities often encountered in real data. Specifically, we

consider nonstationary sequences formed in three ways: (i) adding to a signal with

known correlations a tunable concentration of random outliers or spikes with differ-

ent amplitude, (ii) stitching together segments of data obtained from discontinuous

experimental recordings, or removing some noisy and unreliable parts from continu-

ous recordings and stitching together the remaining parts — a “cutting” procedure

commonly used in preparing data prior to signal analysis, and (iii)generating a signal

comprised of segments with different properties — e.g. different standard deviations

or different correlation exponents. We compare the difference between the scaling re-

36
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sults obtained for stationary correlated signals and correlated signals with these three

types of nonstationarities. We find that introducing nonstationarities to stationary

correlated signals leads to the appearance of crossovers in the scaling behavior and

we study how the characteristics of these crossovers depend on: (a) the fraction and

size of the parts cut out from the signal; (b) the concentration of spikes and their

amplitudes; (c) the proportion between segments with different standard deviations

or different correlations; and (d) the correlation properties of the stationary signal.

We show how to develop strategies for pre-processing “raw” data prior to analysis,

which will minimize the effects of nonstationarities on the scaling properties of the

data and how to interpret the results of DFA for complex signals with different local

characteristics.

2.2 Introduction to this chapter

In recent years, there has been growing evidence indicating that many physical and

biological systems have no characteristic length scale and exhibit long-range power-

law correlations. Traditional approaches such as the power-spectrum and correlation

analysis are suited to quantify correlations in stationary signals [73, 74]. However,

many signals which are outputs of complex physical and biological systems are non-

stationary — the mean, standard deviation and higher moments, or the correlation

functions are not invariant under time translation [73, 74]. Nonstationarity, an im-

portant aspect of complex variability, can often be associated with different trends in

the signal or heterogeneous segments (patches) with different local statistical proper-

ties. To address this problem, detrended fluctuation analysis (DFA) was developed to

accurately quantify long-range power-law correlations embedded in a nonstationary

time series [4, 7]. This method provides a single quantitative parameter — the scaling

exponent α — to quantify the correlation properties of a signal. One advantage of the

DFA method is that it allows the detection of long-range power-law correlations in
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noisy signals with embedded polynomial trends that can mask the true correlations

in the fluctuations of a signal. The DFA method has been successfully applied to

research fields such as DNA[4–6, 20, 27–33, 75, 76], cardiac dynamics [8–19, 21–26, 81–

83], human gait [84], meteorology [51], climate temperature fluctuations [59, 60, 62],

river flow and discharge [52, 53], neural receptors in biological systems [77], and eco-

nomics [38–50]. The DFA method may also help identify different states of the same

system with different scaling behavior — e.g., the scaling exponent α for heart-beat

intervals is different for healthy and sick individuals [17, 19] as well as for waking and

sleeping states [13, 24].

To understand the intrinsic dynamics of a given system, it is important to analyze

and correctly interpret its output signals. One of the common challenges is that

the scaling exponent is not always constant (independent of scale) and crossovers

often exist — i.e., the value of the scaling exponent α differs for different ranges

of scales [8, 13, 19, 78, 79]. A crossover is usually due to a change in the correlation

properties of the signal at different time or space scales, though it can also be a

result of nonstationarities in the signal. A recent work considered different types of

nonstationarities associated with different trends (e.g., polynomial, sinusoidal and

power-law trends) and systematically studied their effect on the scaling behavior of

long-range correlated signals [71]. Here we consider the effects of three other types of

nonstationarities which are often encountered in real data or result from “standard”

data pre-processing approaches.

(i) Signals with random spikes

A second type of nonstationarity is due to the existence of spikes in data, which

is very common in real life signals [8–19, 21–26, 81–84]. Spikes may arise from ex-

ternal conditions which have little to do with the intrinsic dynamics of the system.

In this case, we must distinguish the spikes from normal intrinsic fluctuations in

the system’s output and filter them out when we attempt to quantify correlations.

Alternatively, spikes may arise from the intrinsic dynamics of the system, rather



39

than being an epiphenomenon of external conditions. In this second case, careful

considerations should be given as to whether the spikes should be filtered out when

estimating correlations in the signal, since such “intrinsic” spikes may be related to

the properties of the noisy fluctuations. Here, we consider only the simpler case –

namely, when the spikes are independent of the fluctuations in the signal. The prob-

lem is how spikes affect the scaling behavior of correlated signals, e.g., what kind of

crossovers they may possibly cause. We also demonstrate to what extent features of

the crossovers depend on the statistical properties of the spikes. Furthermore, we

show how to recognize if a crossover indeed indicates a transition from one type of

underlying correlations to a different type, or if the crossover is due to spikes without

any transition in the dynamical properties of the fluctuations.

(ii) Signals with segments removed

First we consider a type of nonstationarity caused by discontinuities in signals. Dis-

continuities may arise from the nature of experimental recordings – e.g., stock ex-

change data are not recorded during the nights, weekends and holidays [38–45]. Al-

ternatively, discontinuities may be caused by the fact that some noisy and unreliable

portions of continuous recordings must be discarded, as often occurs when analyz-

ing physiological signals [8–19, 21–26, 81–83]. In this case, a common pre–processing

procedure is to cut out the noisy, unreliable parts of the recording and stitch together

the remaining informative segments before any statistical analysis is performed. One

immediate problem is how such cutting procedure will affect the scaling properties

of long-range correlated signals. A careful consideration should be given when inter-

preting results obtained from scaling analysis, so that an accurate estimate of the

true correlation properties of the original signal may be obtained.

(iii) Signals with different local behavior

A third type of nonstationarity is associated with the presence of segments in a

signal which exhibit different local statistical properties, e.g., different local stan-

dard deviations or different local correlations. Some examples include: (a) 24 hour
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records of heart rate fluctuations are characterized by segments with larger standard

deviation during stress and physical activity and segments with smaller standard de-

viation during rest [9]; (b) studies of DNA show that coding and non-coding regions

are characterized by different types of correlations [6, 75]; (c) brain wave analysis of

different sleep stages (rapid eye movement [REM] sleep, light sleep and deep sleep)

indicates that the signal during each stage may have different correlation proper-

ties [80]; (d) heartbeat signals during different sleep stages exhibit different scaling

properties[24]. For such complex signals, results from scaling analysis often reveal a

very complicated structure. It is a challenge to quantify the correlation properties of

these signals. Here, we take a first step toward understanding the scaling behavior

of such signals.

We study these three types of nonstationarities embedded in correlated signals.

We apply the DFA method to stationary correlated signals and identical signals

with artificially imposed nonstationarities, and compare the difference in the scaling

results. (i) We find that cutting segments from a signal and stitching together the

remaining parts does not affect the scaling for positively correlated signals. However,

this cutting procedure strongly affects anti-correlated signals, leading to a crossover

from an anti-correlated regime (at small scales) to an uncorrelated regime (at large

scales). (ii) For the correlated signals with superposed random spikes, we find that

the scaling behavior is a superposition of the scaling of the signal and the apparent

scaling of the spikes. We analytically prove this superposition relation by introducing

a superposition rule. (iii) For the case of complex signals comprised of segments with

different local properties, we find that their scaling behavior is a superposition of the

scaling of the different components — each component containing only the segments

exhibiting identical statistical properties. Thus, to obtain the scaling properties of

the signal, we need only to examine the properties of each component — a much

simpler task than analyzing the original signal.

The layout of the chapter is as follows: In Sec. 2.3, we consider the effect of
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random spikes on correlated signals. We show that the superposition of spikes and

signals can be explained by a superposition rule derived in Appendix .3. In Sec. 2.4,

we compare the scaling properties of correlated signals before and after removing

some segments from the signals. In Sec. 2.5, we study signals comprised of segments

with different local behavior. We systematically examine all resulting crossovers,

their conditions of existence, and their typical characteristics associated with the

different types of nonstationarity. We summarize our findings in Sec. 2.6.

2.3 Signals with random spikes

Another type of nonstationarity is due to the existence of spikes in data, which is

very common in real life signals [8–19, 21–26, 81–84]. Spikes may arise from external

conditions which have little to do with the intrinsic dynamics of the system. In this

case, we must distinguish the spikes from normal intrinsic fluctuations in the system’s

output and filter them out when we attempt to quantify correlations. Alternatively,

spikes may arise from the intrinsic dynamics of the system, rather than being an

epiphenomenon of external conditions. In this second case, careful considerations

should be given as to whether the spikes should be filtered out when estimating cor-

relations in the signal, since such “intrinsic” spikes may be related to the properties

of the noisy fluctuations. Here, we consider only the simpler case – namely, when

the spikes are independent of the fluctuations in the signal. We study how spikes

affect the scaling behavior of correlated signals, e.g., what kind of crossovers they

may possibly cause.

First, we generate surrogate nonstationary signals by adding random spikes to a

stationary correlated signal u(i) [see Sec. .2 and Fig. 2.1(a-c)].

We find that the correlation properties of the nonstationary signal with spikes

depend on the scaling exponent α of the stationary signal and the scaling exponent

αsp of the spikes. When uncorrelated spikes (αsp = 0.5) are added to a correlated
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Fig. 2.1. (a) An example of an anti-correlated signal u(i) with scaling
exponent α = 0.2, Nmax = 220 and standard deviation σ = 1. (b) A series of
uncorrelated spikes (αsp = 0.5) at 5% randomly chosen positions (concentra-
tion p = 0.05) and with uniformly distributed amplitudes Asp in the interval
[−4, 4]. (c) The superposition of the signals in (a) and (b). (d) Scaling behav-
ior of an anti-correlated signal u(i) (α = 0.2) with spikes (Asp = 1, p = 0.05,
αsp = 0.5). For n < n×, F (n)/n ≈ Fη(n)/n ∼ nα, where Fη(n)/n is the scal-
ing function of the signal u(i). For n > n×, F (n)/n ≈ Fsp(n)/n ∼ nαsp . (e)
Scaling behavior of a correlated signal u(i) (α = 0.8) with spikes (Asp = 10,
p = 0.05, αsp = 0.5). For n < n×, F (n)/n ≈ Fsp(n)/n ∼ nαsp . For n > n×,
F (n)/n ≈ Fη(n)/n ∼ nα. Note that when α = αsp = 0.5, there is no
crossover.
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or anti-correlated stationary signal [Fig 2.1(d) and (e)], we observe a change in the

scaling behavior with a crossover at a characteristic scale n×. For anti-correlated

signals (α < 0.5) with random spikes, we find that at scales smaller than n×, the

scaling behavior is close to the one observed for the stationary anti-correlated signal

without spikes, while for scales larger than n×, there is a crossover to random behav-

ior. In the case of correlated signals (α > 0.5) with random spikes, we find a different

crossover from uncorrelated behavior at small scales, to correlated behavior at large

scales with an exponent close to the exponent of the original stationary correlated

signal. Moreover, we find that spikes with a very small amplitude can cause strong

crossovers in the case of anti-correlated signals, while for correlated signals, identi-

cal concentrations of spikes with a much larger amplitude do not affect the scaling.

Based on these findings, we conclude that uncorrelated spikes with a sufficiently large

amplitude can affect the DFA results at large scales for signals with α < 0.5 and at

small scales for signals with α > 0.5.

To better understand the origin of this crossover behavior, we first study the

scaling of the spikes only [see Fig. 2.1(b)]. By varying the concentration p (0 ≤ p ≤ 1)

and the amplitude Asp of the spikes in the signal, we find that for the general case

when the spikes may be correlated, the r.m.s. fluctuation function behaves as

Fsp(n)/n = k0
√

pAspn
αsp , (2.1)

where k0 is a constant and αsp is the scaling exponent of the spikes.

Next, we investigate the analytical relation between the DFA results obtained

from the original correlated signal, the spikes and the superposition of signal and

spikes. Since the original signal and the spikes are not correlated, we can use a

superposition rule (see [71] and Appendix .3) to derive the r.m.s. fluctuation function

F (n)/n for the correlated signal with spikes:

[F (n)/n]2 = [Fη(n)/n]2 + [Fsp(n)/n]2, (2.2)
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where Fη(n)/n and Fsp(n)/n are the r.m.s. fluctuation function for the signal and the

spikes, respectively. To confirm this theoretical result, we calculate
√

[Fη(n)/n]2 + [Fsp(n)/n]2

[see Figs. 2.1(d), (e)] and find this Eq. (2.2) is remarkably consistent with our exper-

imental observations.

Using the superposition rule, we can also theoretically predict the crossover scale

n× as the intercept between Fη(n)/n and Fsp(n)/n, i.e., where Fη(n×) = Fsp(n×).

We find that

n× =

(√
pAsp

k0

b0

)1/(α−αsp)

, (2.3)

since the r.m.s. fluctuation function for the signal and the spikes are Fη(n)/n = b0n
α

[71] and Fsp(n)/n = k0
√

pAspn
αsp [Eq. (2.1)], respectively. This result predicts the

position of the crossover depending on the parameters defining the signal and the

spikes.

Our result derived from the superposition rule can be useful to distinguish two

cases: (i) the correlated stationary signal and the spikes are independent (e.g., the

case when a correlated signal results from the intrinsic dynamics of the system while

the spikes are due to external perturbations); and (ii) the correlated stationary signal

and the spikes are dependent (e.g., both the signal and the spikes arise from the

intrinsic dynamics of the system). In the latter case, the identity in the superposition

rule is not correct (see Appendix .3).

2.4 Signals with segments removed

In this section, we study the effect of nonstationarity caused by removing segments of

a given length from a signal and stitching together the remaining parts — a “cutting”

procedure often used in pre-processing data prior to analysis. To address this ques-

tion, we first generate a stationary correlated signal u(i) (see Sec. .2) of length Nmax

and a scaling exponent α, using the modified Fourier filtering method[67]. Next, we

divide this signal into Nmax/W non-overlapping segments of size W and randomly
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remove some of these segments. Finally, we stitch together the remaining segments

in the signal u(i) [Fig. 2.2(a)], thus obtaining a surrogate nonstationary signal which

is characterized by three parameters: the scaling exponent α, the segment size W

and the fraction of the signal u(i), which is removed.

We find that the scaling behavior of such a nonstationary signal strongly depends

on the scaling exponent α of the original stationary correlated signal u(i). As illus-

trated in Fig. 2.2(b), for a stationary anti-correlated signal with α = 0.1, the cutting

procedure causes a crossover in the scaling behavior of the resultant nonstationary

signal. This crossover appears even when only 1% of the segments are cut out. At

the scales larger than the crossover scale n× the r.m.s. fluctuation function behaves

as F (n) ∼ n0.5, which means an uncorrelated randomness, i.e., the anti-correlation

has been completely destroyed in this regime. For all anti-correlated signals with

exponent α < 0.5, we observe a similar crossover behavior. This result is surprising,

since researchers often take for granted that a cutting procedure before analysis does

not change the scaling properties of the original signal. Our simulation shows that

this assumption is not true, at least for anti-correlated signals.

Next, we investigate how the two parameters — the segment size W and the

fraction of points cut out from the signal — control the effect of the cutting procedure

on the scaling behavior of anti-correlated signals. For the fixed size of the segments

(W = 20), we find that the crossover scale n× decreases with increasing the fraction

of the cutout segments [Fig. 2.2(c)]. Furthermore, for anti-correlated signals with

small values of the scaling exponent α, e.g., α = 0.1 and α = 0.2, we find that n× and

the fraction of the cutout segments display an approximate power-law relationship.

For a fixed fraction of the removed segments, we find that the crossover scale n×

increases with increasing the segment size W [Fig. 2.2(d)]. To minimize the effect of

the cutting procedure on the correlation properties, it is advantageous to cut smaller

number of segments of larger size W . Moreover, if the segments which need to be

removed are too close (e.g., at a distance shorter than the size of the segments), it may
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Fig. 2.2. Effects of the “cutting” procedure on the scaling behavior of sta-
tionary signals. Nmax = 220 is the number of points in the signals (standard
deviation σ = 1) and W is the size of the cutout segments. (a) A stationary
signal with 10% of the points removed. The removed parts are presented
by shaded segments of size W = 20 and the remaining parts are stitched
together. (b) Scaling behavior of signals obtained from an anti-correlated
stationary signal after the cutting procedure. A crossover appears at scale
n× that decreases with increasing the fraction of points removed from the
signal. Dependence of the crossover scale n× on the fraction (c) and on
the size W (d) of the cutout segments for anti-correlated signals with differ-
ent scaling exponent α. (e) Cutting procedure applied to correlated signals
(α > 0.5). In contrast to (b), no discernible effect on the scaling behavior is
observed even when up to 50% of the points in the signals are removed.
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be advantageous to cut out both the segments and a part of the signal between them.

This will effectively increase the size of the segment W without substantially changing

the fraction of the signal which is cut out, leading to an increase in the crossover

scale n×. Such strategy would minimize the effect of this type of nonstationarity on

the scaling properties of data. For small values of the scaling exponent α (α < 0.25),

we find that n× and W follow power-law relationships [Fig. 2.2(d)]. The reason we

do not observe a power-law relationship between n× and W and between n× and

the fraction of cutout segments for the values of the scaling exponent α close to 0.5

may be due to the fact that the crossover regime becomes broader when it separates

scaling regions with similar exponents, thus leading to uncertainty in defining n×.

For a fixed W and a fixed fraction of the removed segments [see Figs. 2.2(c) and (d)],

we observe that n× increases with the increasing value of the scaling exponent α,

i.e., the effect of the cutting procedure on the scaling behavior decreases when the

anti-correlations in the signal are weaker (α closer to 0.5).

Finally, we consider the case of correlated signals u(i) with 1.5 > α > 0.5.

Surprisingly, we find that the scaling of correlated signals is not affected by the

cutting procedure. This observation remains true independently of the segment size

W — from very small W = 5 up to very large W = 5000 segments — even when up to

50% of the segments are removed from a signal with Nmax ∼ 106 points [Fig. 2.2(e)].

2.5 Signals with different local standard devia-

tions

Here we consider nonstationary signals comprised of segments with the same local

scaling exponent, but different local standard deviations. We first generate a sta-

tionary correlated signal u(i) (see Sec. .2) with fixed standard deviation σ1 = 1.

Next, we divide the signal u(i) into non-overlapping segments of size W . We then
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Fig. 2.3. (a) Anti-correlated signal (α = 0.1) with standard deviation
σ1 = 1 and amplified segments with standard deviation σ2 = 4. The size
of each segment is W = 20 and the fraction of the amplified segments is
p = 0.1 from the total length of the signal (Nmax = 220). (b) Scaling
behavior of the signal in (a) for a different fraction p of the amplified segments
(after normalization of the globe standard deviation to unity). A crossover
from anti-correlated behavior (α = 0.1) at small scales to random behavior
(α = 0.5) at large scales is observed. (c) Dependence of the crossover scale
n× on the fraction p of amplified segments for the signal in (a). Here we
choose ∆ = 0.04. (d) Scaling behavior of nonstationary signals obtained
from correlated stationary signals (1 > α > 0.5) with standard deviation
σ1 = 1, for a different fraction of the amplified segments with σ2 = 4. No
difference in the scaling is observed, compared to the original stationary
signal.
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the signal in these segments, σ2 = 4 [Fig.2.3(a)]. Finally, we normalize the entire

signal to global standard deviation σ = 1 by dividing the value of each point of the

signal by
√

(1 − p)σ2
1 + pσ2

2.

For nonstationary anti-correlated signals (α < 0.5) with segments characterized

by two different values of the standard deviation, we observe a crossover at scale n×

[Fig.2.3(b)]. For small scales n < n×, the behavior is anti-correlated with an exponent

equal to the scaling exponent α of the original stationary anti-correlated signal u(i).

For large scales n > n×, we find a transition to random behavior with exponent

0.5, indicating that the anti-correlations have been destroyed. The dependence of

crossover scale n× on the fraction p of segments with larger standard deviation is

shown in Fig. 2.3(c) (n× is determined from the difference ∆ of log10[F (n)/n] between

the nonstationary signal with amplified segments and the original stationary signal).

The dependence is not monotonic because for p = 0 and p = 1, the local standard

deviation is constant throughout the signal, i.e., the signal becomes stationary and

thus there is no crossover. Note the asymmetry in the value of n× — a much smaller

value of n× for p = 0.05 compared to p = 0.95 [see Fig. 2.3(b-c)]. This result indicates

that very few segments with a large standard deviation (compared to the rest of the

signal) can have a strong effect on the anti-correlations in the signal. Surprisingly,

the same fraction of segments with a small standard deviation (compared to the rest

of the signal) does not affect the anti-correlations up to relatively large scales.

For nonstationary correlated signals (α > 0.5) with segments characterized by

two different values of the standard deviation, we surprisingly find no difference in

the scaling of F (n)/n, compared to the stationary correlated signals with constant

standard deviation [Fig. 2.3(d)]. Moreover, this observation remains valid for differ-

ent sizes of the segments W and for different values of the fraction p of segments

with larger standard deviation. We note that in the limiting case of very large values

of σ2/σ1, when the values of the signal in the segments with standard deviation σ1

could be considered close to “zero”, the results in Fig. 2.3(d) do not hold.
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2.6 Conclusions

In this chapter we studied the effects of three different types of nonstationarities us-

ing the DFA correlation analysis method. Specifically, we consider sequences formed

in three ways: (i) stitching together segments of signals obtained from discontinuous

experimental recordings, or removing some noisy and unreliable segments from con-

tinuous recordings and stitching together the remaining parts; (ii) adding random

outliers or spikes to a signal with known correlations, and (iii) generating a signal

composed of segments with different properties — e.g. different standard deviations

or different correlations. We compare the difference between the scaling results ob-

tained for stationary correlated signals and for correlated signals with artificially

imposed nonstationarities.

(ii) Signals with superposed random spikes. We find that for an anti-correlated

signal with superposed spikes at small scales, the scaling behavior is close to that

of the stationary anti-correlated signal without spikes. At large scales, there is a

crossover to random behavior. For a correlated signal with spikes, we find a different

crossover from uncorrelated behavior at small scales to correlated behavior at large

scales with an exponent close to the exponent of the original stationary signal. We

also find that the spikes with identical density and amplitude may cause strong effect

on the scaling of an anti-correlated signal while they have a much smaller or no effect

on the scaling of a correlated signal — when the two signals have the same standard

deviations. We investigate the characteristics of the scaling of the spikes only and

find that the scaling behavior of the signal with random spikes is a superposition

of the scaling of the signal and the scaling of the spikes. We analytically prove this

superposition relation by introducing a superposition rule.

(ii) We find that removing segments from a signal and stitching together the

remaining parts does not affect the scaling behavior of positively correlated signals

(1.5 ≥ α > 0.5), even when up to 50% of the points in these signals are removed.
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However, such a cutting procedure strongly affects anti-correlated signals, leading to

a crossover from an anti-correlated regime (at small scales) to an uncorrelated regime

(at large scales). The crossover scale n× increases with increasing value of the scaling

exponent α for the original stationary anti-correlated signal. It also depends both

on the segment size and the fraction of the points cut out from the signal: (1) n×

decreases with increasing fraction of cutout segments, and (2) n× increases with

increasing segment size. Based on our findings, we propose an approach to minimize

the effect of cutting procedure on the correlation properties of a signal: When two

segments which need to be removed are on distances shorter than the size of the

segment, it is advantageous to cut out both the segments and the part of the signal

between them.

(iii) Signals composed of segments with different local properties. We find that

For nonstationary correlated signals comprised of segments which are characterized

by two different values of the standard deviation, there is no difference in the scaling

behavior compared to stationary correlated signals with constant standard deviation.

For nonstationary anti-correlated signals, we find a crossover at scale n×. For small

scales n < n×, the scaling behavior is similar to that of the stationary anti-correlated

signals with constant standard deviation. For large scales n > n×, there is a transi-

tion to random behavior. We also find that very few segments with large standard

deviation can strongly affect the anti-correlations in the signal. In contrast, the same

fraction of segments with standard deviation smaller than the standard deviation of

the rest of the anti-correlated signal has much weaker effect on the scaling behavior

— n× is shifted to larger scales.
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Human Motor Activity
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Chapter 3

Non-Random Fluctuations and

Multi-scale Dynamics of Human

Activity

3.1 Overview

We investigate if known extrinsic and intrinsic factors fully account for the complex

features observed in recordings of human activity as measured from forearm motion

in subjects undergoing their regular daily routine [85, 86]. We demonstrate that the

apparently random forearm motion possesses dynamic patterns characterized by ro-

bust scale-invariant and nonlinear features. These patterns remain stable from one

subject to another and are unaffected by changes in the average activity level that

occur within individual subjects throughout the day and on different days of the

week, since they persist during daily routine and when the same subjects undergo

time-isolation laboratory experiments designed to account for the circadian phase

and to control the known extrinsic factors. Further, by modeling the scheduled

events imposed throughout the laboratory protocols, we demonstrate that they can-

53



54

not account for the observed scaling patterns in activity fluctuations. We attribute

these patterns to a previously unrecognized intrinsic nonlinear multi-scale control

mechanism of human activity that is independent of known extrinsic factors such as

random and scheduled events, as well as the known intrinsic factors which possess a

single characteristic time scale such as circadian and ultradian rhythms.

3.2 Introduction to this Chapter

Activity is one of the defining features of life. Control of human activity is complex,

being influenced by many factors both extrinsic (work, recreation, reactions to un-

foreseen random events) and intrinsic (the circadian pacemaker that influences our

sleep/wake cycle [87, 88] and ultradian oscillators with shorter time scales [89, 90]).

The extrinsic factors may account for the apparently random fluctuations in human

motion observed over short time scales while the intrinsic rhythms may account for

the underlying regularity in average activity level over longer periods of up to 24 h.

Further, human activity correlates with important physiological functions including

whole body oxygen consumption and heart rate [13, 91–93].

To investigate the effect of extrinsic factors related to physical activity on the

daily pattern of cardiac dynamics, we studied long records of data from wrist actig-

raphy. It is often assumed that an increase in cardiac risk in the period of 9-11AM

is simply related to the increase of the activity level. An important question is if the

level of activity is simply a result of extrinsic stimuli (in which case there would be

no self-similar structure to the activity fluctuations) or it is regulated by an intrin-

sic mechanism, which relates through neural pathways to the endogenous circadian

pacemaker and the neuroautonomic cardiac control.

Traditionally activity fluctuations are considered as random noise and have been

ignored. We hypothesize that there are systematic patterns in the activity fluctua-

tions that may be independent of known extrinsic and intrinsic factors. To test our
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the endogenous circadian pacemaker which influences the sleep/wake cycle.
Our findings of scale-invariant activity patterns (Figs. 3.2–3.7) indicate a
heretofore-unidentified intrinsic multi-scale control of human activity 4©,
which is independent of other extrinsic and intrinsic factors such as 1©, 2©,
and 3©. The second panel illustrates an actual one-week recording of human
activity [94] during the daily routine protocol. Data structure highlights
a 24-h sleep/wake periodic change in the mean activity — lowest during
sleep (filled bars). The third panel, expanding a 16-h section of wakefulness,
also shows patches of high and low average activity levels with apparent
erratic fluctuations at various time scales. The bottom left panel is an ac-
tivity recording from the same subject during the constant routine protocol
with much lower average activity values compared to daily routine. The
clear 2-h cycle is a result of scheduled laboratory events. The bottom right
panel shows activity levels in the same subject during the forced desynchrony
protocol, characterized by a 28-h sleep/wake cycle (as opposed to the 24-h
rhythm in activity data during the daily routine).
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hypotheses, we evaluate the structure of human activity during wakefulness, using:

(i) probability distribution analysis; (ii) power spectrum analysis, and (iii) fractal

scaling and nonlinear analysis. To elucidate the presence of an intrinsic activity con-

trol center independent of known circadian, ultradian, scheduled and random factors,

we apply 3 complementary protocols (See Appendix .6).

• Daily routine protocol: We record activity data throughout two consecutive

weeks in 16 healthy ambulatory domiciliary subjects (8 males, 8 females, 19-44 years,

mean 27 years) performing their routine daily activities. The only imposed con-

straints are that subjects go to bed and arise at the same time each day (8 h sleep

opportunity) and that they are not permitted to have daytime naps (Fig. 3.1).

• Constant routine protocol: To assess intrinsic activity controllers (i.e. circadian

or other neural centers) independent of scheduled and random external influences,

activity recordings are made in the laboratory throughout 38 h of constant posture

(semi-recumbent), wakefulness, environment (21oC, dim light [< 8 lux]), dietary

intake and scheduled events (Appendix .6.2) [95, 96]. This protocol is performed

in a subset of subjects (7 males, 4 females) that participated in the daily routine

protocol. These highly controlled and constant experimental conditions result in

reduced average and variance of activity levels.

• Forced desynchrony protocol: To test for the presence of heretofore unidentified

intrinsic activity control centers, independent of known activity regulators (circadian

pacemaker), while accounting for scheduled and random external influences, we em-

ploy the validated Forced desynchrony (FD) protocol (Appendix .6.2) [88]. Six (4

male, 2 female) of the 16 subjects that participated in the daily routine protocol

completed the FD limb of the study. For eight days subjects remain in constant

dim light (to avoid “resetting” the body clock). Sleep periods are delayed by 4 h

every day, such that subjects live on recurring 28 h “days”, while all scheduled ac-

tivities become desynchronized from the endogenous circadian pacemaker. Thus, as

measurements occur across all phases of the circadian clock, the effect of intrinsic



57

circadian influences can be removed [88]. Average activity level and activity variance

are also significantly reduced due to laboratory-imposed restrictions on the subject’s

activity (Fig. 3.1).

3.3 Intrinsic patterns in activity

3.3.1 Common distribution form

When the same subject is studied in different protocols, we find large differences in

the probability distributions (Fig. 3.2). For example, during wakefulness greater val-

ues of activity occur most frequently during the daily routine, intermediate activity

values occur during the forced desynchrony, and the highest frequency of low activity

values is seen during the constant routine (Fig. 3.2a). Indeed, the largest activity

values encountered during the constant routine protocol are approximately two or-

ders of magnitude less frequent than similar activity values encountered in the daily

routine protocol. We find major differences between individuals in the distribution

of activity values during the daily routine protocol (Fig. 3.2b). Such differences are

expected given the different daily schedules, environments, and reactions to random

events.

To test if the individual probability density curves follow a common functional

form, we appropriately rescale the distributions of activity values on both axes to

account for differences in average activity level and standard deviation while pre-

serving the normalization to unit area. We divide the activity values by a constant,

A0, and multiply the probability density function by the same constant, where A0 is

the activity value before rescaling of each individual curve for which the cumulative

probability (i.e., the area under the density function curve) is 60%. We find a re-

markable similarity in the shapes of the probability distributions for each subject in

all three protocols (Figs. 3.2 a, e), and for all individuals when in the same protocol
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Fig. 3.2. (a) Probability distributions of activity values during wakefulness
for an individual subject during 14 consecutive days of daily routine, 38 h of
constant routine and 8 days of the forced desynchrony protocol. Probability
distributions for all subjects during (b) the daily routine protocol, (c) the
constant routine, and (d) the forced desynchrony protocol, indicate large
difference between individuals. (e) – (h) Same probability distributions as
in (a) – (d), after appropriately rescaling both axes. Data points for all
subjects and for all three protocols collapse onto a single curve.
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(Fig. 3.2f, g, h). The existence of a universal form of the probability distribution,

independent of activity level in all individuals and in all protocols (Fig. 3.3a), sug-

gests that a common underlying mechanism may account for the overall distribution

of activity.
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Fig. 3.3. (a) Group average of the rescaled distributions during all three
protocols. All distributions collapse onto a single curve, suggesting a com-
mon underlying mechanism of activity regulation. The same rescaling proce-
dure as in Fig. 3.2 is used. (b) Group average of all individual distributions
rescaled as in (a) obtained for varied time windows during the daily routine.

This probability distribution when plotted on a log-log scale reveals different

characteristics above and below a distinct crossover point (Fig. 3.3a). At scales

above the crossover activity level there is pronounced non-Gaussian tail (Fig. 3.3a).

This tail on the log-log plot represents a power-law form, indicating an intrinsic

self-similar structure for a range of activity values. Moreover, we find that the

observed shape of the rescaled probability distribution remains unchanged when the

data series are reanalyzed using a variety of observation windows ranging from 15

s to 6 min (Fig. 3.3b). This stability of the probability distribution over a range

of time scales indicates that the underlying dynamic mechanisms controlling the

activity have similar statistical properties on different time scales. Statistical self-

similarity is a defining characteristic of fractal objects and is reminiscent of a wide
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class of physical systems with universal scaling properties. Our finding of a universal

form of the probability distribution raises the possibility of an intrinsic mechanism

that influences activity values in a self-similar “fractal” manner, that is unrelated

to the individual’s daily and weekly schedules, reactions to the environment, the

average level of activity, the phase of the circadian pacemaker, and the time scale of

observation.

3.3.2 Search for ultradian rhythms

We next perform power spectral analyses for all three protocols to determine whether

there exist any systematic intrinsic ultradian rhythms of activity with periods of less

than 24 h duration [89, 97]. The data for each individual exhibit occasional peaks
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Fig. 3.4. Curves are vertically offset. Power spectra are shown with
decreasing frequency from left to right. Smooth behavior of the daily rou-
tine curve suggests absence of periodic rhythms in the ultradian range. The
spectral density peaks for the simulated scheduled activity data represent-
ing controlled scheduled events during the protocol (bottom curve) match
the peaks observed in the original human activity data recorded during the
forced desynchrony protocol. Our analysis and simulation suggest that the
observed peaks in the power spectrum are due to scheduled laboratory events
and cannot be attributed to endogenous ultradian rhythms.
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in the daily routine protocol for periods ranging from 30 min to 4 h. However, we

find no systematic ultradian rhythms within individuals from week to week, and no

systematic ultradian rhythms in the group average for the daily routine protocol

(Fig. 3.4). The only systematic rhythms that are ostensibly in the ultradian range

which emerge in the group data are at 4 h during the forced desynchrony protocol

(with harmonics at 2 h and 80 min) and at 2 h during the constant routine protocol

(with harmonics at 1 h and 30 min) (Fig. 3.1 and Fig. 3.4). These peaks are caused

by the controlled scheduled activities in the laboratory and are extrinsic to the body

as they also occur in simulated scheduled activity data that assumes specific activity

values for each scheduled behavior imposed throughout the laboratory protocols

(Fig. 3.4). Thus, we find no evidence of systematic intrinsic ultradian rhythms in

our data.

3.3.3 Long-range power-law correlations

To provide further insight into the dynamic control of activity, we next examine the

temporal organization in the fluctuations in activity values. We perform detrended

fluctuation analysis (DFA) which quantifies correlations in the activity fluctuations

after accounting for nonstationarity in the data by subtracting underlying polynomial

trends [4, 5, 71, 72]. The DFA method quantifies the root mean square fluctuations,

F (n), of a signal at different time scales n. Power-law functional form, F (n) ∼
nα, indicates self-similarity (fractal scaling). The parameter α, called the scaling

exponent, quantifies the correlation properties in the signal: if α=0.5, there is no

correlation (random noise); if α < 0.5, the signal is anticorrelated, where large

activity values are more likely to be followed by small activity values; if α > 0.5,

there are positive correlations, where large activity values are more likely to be

followed by large activity values (and vice versa for small activity values).

Figure 3.5a shows that F (n) for a typical subject during wakefulness exhibits a
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Fig. 3.5. (a) DFA scaling of activity fluctuation for a subject during
wakefulness, demonstrating strong positive correlations on time scales from
seconds to hours. (b) DFA scaling of the magnitude series of activity in-
crements for the same signals as in (a). A scaling exponent αmag ≈ 0.8
of similar value is observed for all three protocols, consistent with robust
nonlinear dynamics.

power-law form over time scales from ≈ 1 min to ≈ 4 h. We find that the scal-

ing exponent α is virtually identical for records obtained during the first week of

daily routine (α = 0.92 ± 0.04, mean ± standard deviation among subjects), the

second week (α = 0.92 ± 0.06) of the daily routine, the constant routine protocol

(α = 0.88 ± 0.05), and the forced desynchrony protocol (α = 0.92 ± 0.03). The

value of α ≈ 0.9 for all protocols and all individuals indicates that activity fluctua-

tions are characterized by strong long-range positive correlations, and thus are not
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dominated by random factors. Furthermore, we find that this scaling behavior is not

caused by the scheduled activities because simulated scheduled activity data that are

generated by assigning a specific activity value for each scheduled event throughout

the laboratory protocols yields an exponent of α = 1.5 (Fig. 3.5a), which represents

random-walk type behavior. These results suggest that the activity fluctuations are

not a consequence of random events (in which case α would be 0.5) or scheduled

events, but rather relate to an underlying mechanism of activity control with stable

fractal-like features over a wide range of time scales from minutes to hours. Since

mean activity levels and the amplitude of the fluctuations are greatly reduced in the

laboratory during the constant routine and forced desynchrony protocols (Fig. 3.1),

we obtain smaller values of F (n) (downward shift of the lines in Fig. 3.5a). How-

ever there is no change in the scaling exponent α. Similarly, the scaling exponents

for the daily routine protocol are independent of the average activity levels of the

different subjects (Fig. 3.6a), the mean activity level on different days of the week

(Fig. 3.6b), and of the circadian phase, suggesting that this scaling pattern of activity

fluctuations appears to be an intrinsic feature.

3.3.4 Nonlinear Fourier phase information

To test for the presence of nonlinear properties of the data, we analyze the “magni-

tude series” formed by taking the absolute values of the increments between consec-

utive activity values [26]. Again, from detrended fluctuation analysis of this series,

we find practically identical scaling exponents, αmag, for all three protocols, despite

large differences in mean activity levels between protocols (Fig. 3.5b). Moreover,

all individuals have very similar values of the scaling exponent αmag (Fig. 3.6a),

which are not systematically changed by the protocol. For the group, during the

first week of daily routine, we find αmag = 0.78 ± 0.06 (mean ± standard deviation

among subjects), during the second week αmag = 0.76 ± 0.05, during the constant
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Fig. 3.6. (a) Scaling exponents α and αmag (left scale), and average activ-
ity levels (right scale) for all 16 subjects obtained from a 14-day daily routine
protocol. Although the average activity level between subjects changes con-
siderably (from 0.2 to 0.5), both scaling exponents are consistent for all sub-
jects, exhibiting a group average of α = 0.92± 0.05 and αmag = 0.77± 0.05.
(b) Group average scaling exponents α and αmag calculated for different
days of the week. While the average activity level progressively increases
throughout the week (with a peak on Saturday and a minimum on Sunday),
the group average scaling exponents α and αmag remain practically constant,
consistent with a robust underlying mechanism of control characterized by
fractal and nonlinear features which do not change with activity level.

routine protocol αmag = 0.82 ± 0.05, and during the forced desynchrony protocol

αmag = 0.80 ± 0.04. Since αmag ≈ 0.8(> 0.5), there are positive long-range cor-

relations in the magnitude series of activity increments, indicating the existence of
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nonlinear properties related to Fourier phase interactions (Fig. 3.5b) [26, 81]. To con-

firm that the observed positive correlations in the magnitude series indeed represent

nonlinear features in the activity data, we do the following test: we generate a sur-

rogate time series by performing a Fourier transform on the activity recording from

the same subject during daily routine as in Fig. 3.5a, preserving the Fourier ampli-

tudes but randomizing the phases, and then performing an inverse Fourier transform.

This procedure eliminates nonlinearities, preserving only the linear features of the

original activity recording such as the power spectrum and correlations. Thus, the

new surrogate signal has the same scaling behavior with α = 0.93 (Fig. 3.5a) as

the original activity recording; however, it exhibits uncorrelated behavior for the

magnitude series (αmag = 0.5) (Fig. 3.5b). Our results show that the activity data

contains important phase correlations which are canceled in the surrogate signal by

the randomization of the Fourier phases, and that these correlations do not exist in

the simulated scheduled activity. Further, our tests indicate that these nonlinear fea-

tures are encoded in Fourier phase, suggesting an intrinsic nonlinear mechanism [81].

The similar value of αmag for all three protocols and all individuals, which is different

from αmag = 0.5 obtained for the simulated scheduled activity and for the phase ran-

domized data, confirms that the intrinsic dynamics possess nonlinear features that

are independent of the daily and weekly schedules, reaction to the environment, the

average level of activity, and the phase of the circadian pacemaker.

To determine whether or not there is any alteration of the intrinsic patterns for

dominant and non-dominant (left and right) hands [98], we record one week of ac-

tivity data of the left and right hands simultaneously for five additional subjects in

the daily protocol. For all subjects, we find that the form of activity distribution

(Fig. 3.7a) and the power-law correlations (Fig. 3.7b) are the same for dominant

(more active) and non-dominant hands, confirming that the observed intrinsic pat-

terns are independent of activity level.

Finally, to ensure that the power-law correlations are not an artifact produced
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Fig. 3.7. In five additional subjects, we continuously measure both left and
right wrist activity levels simultaneously for one week. (a) Distributions of
left and right wrist activity for a typical subject. The subject is right-handed,
and the activity level and variance of the right wrist is larger than that of the
left wrist. As a result, compared to the left wrist, the right wrist has a smaller
probability at small activity level, and a larger probability at large activity
level. After the same rescaling as in Fig. 3.2 (e)-(h), the distributions of the
left wrist activity and the right wrist activity collapse onto the same curve.
The functional form of this curve is the same as obtained in Fig. 3.2(e)-(h)
and Fig. 3.3. (b) DFA results of left and right wrist activity fluctuations
reveal practically identical power-law correlations — the same value of α.
The smaller values of F (n) (vertical shift) for the left wrist are due to the
smaller average activity level and variance of the left hand.

by the instrument, we obtain ”test” activity data by attaching an Actiwatch to a

15 cm radius disk, turning at constant angular velocity of 45 rpm (Fig. 3.8a). The

activity values of the Actiwatch fluctuate only slightly, and analysis of these random

fluctuations reveals scaling exponents α ≈ 0.5 and αmag ≈ 0.5 (Fig. 3.8b), which

indicate random linear behavior. Thus, the stable values of α and αmag observed in

our subjects throughout the varied protocols do not depend on the recording device,

but instead these exponents are inherent characteristics of the subjects, and that

both hands have the same underlying dynamics of activity regulation.
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Fig. 3.8. Results suggest the observed scaling features in activity fluctua-
tions are not an artifact of the device. (a) Data recorded from an Actiwatch
placed on a disk rotating with constant angular velocity. (b) DFA correlation
analysis of the fluctuations in (a) shows random noise behavior, in contrast
to the strong positive correlations in activity fluctuations (Figs. 3.5, 3.7).

3.4 Discussion

In summary, the findings reported here offer insights into the mechanisms of human

wrist activity control. Prior to our work, it has been a general belief, though never

tested, that fluctuations in activity during wakefulness are somewhat random, influ-

enced mainly by extrinsic factors such as reactions to unforeseen random events. Our

findings of a stable form for the probability distribution, long-range power-law cor-

relations and nonlinear Fourier-phase features on time scales from seconds to hours,

and the consistency of our results among individuals and for different protocols, sug-

gest that there exist previously unrecognized complex dynamic patterns of human
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activity that are unrelated to extrinsic factors or to the average level of activity. We

also show these scale-invariant patterns to be independent of known intrinsic factors

related to the circadian and to any ultradian rhythms. Notably, (i) these patterns

are unchanged when obtained at different phases of the circadian pacemaker; (ii) we

do not observe systematic intrinsic ultradian rhythms in activity among subjects in

the daily routine experiment; (iii) imposing strong extrinsic ultradian rhythms at 4

h and 2 h in the laboratory protocols did not change the fractal scaling exponents α

or αmag or the form of the probability distribution; and (iv) we find consistent results

over a wide range of time scales. Together, these findings strongly suggest that our

results are not a reflection of the basic rest activity cycles or ultradian rhythms. We

attribute these novel scale-invariant patterns to a robust intrinsic multi-scale mecha-

nism of regulation (Fig. 3.1). Further, our findings suggest that activity control may

be based on a multiple-component nonlinear feedback mechanism encompassing cou-

pled neuronal nodes located both in the central and peripheral nervous systems, each

acting in a specific range of time scales [99]. This insight provides key elements and

guidance for future studies focused on modeling locomotor regulation [100, 101] .
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Chapter 4

Circadian Rhythms

4.1 Introduction to this chapter

4.1.1 Effect of circadian factors and day/night changes in

behaviors on the pattern of cardiovascular risk

Cardiovascular events are the leading cause of mortality in the United States [103].

These events do not occur randomly across the day. Epidemiological studies demon-

strate that myocardial infarction [102, 104–108], stroke [109, 110], angina [108], ven-

Fig. 4.1. Frequency of myocardial infarctions with a fitted 2-harmonic-
regression shows a peak at ≈ 9 − 11AM [102].

70
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tricular arrhythmias [111] and sudden cardiac death [112–114] have a 24-hour day/night

pattern with a primary peak of occurrence around 9:00AM. Such a window of car-

diac vulnerability has been hypothesized to be attributable to external factors, e.g.,

sleep-wake cycles and physical activity, but this hypothesis has not been tested.

A potential criticism of the initial epidemiology [102, 115] is that there may have

been a degree of reporting bias (i.e. symptoms not reported until morning). A

subsequent study assessed the frequency of ventricular tachyarrhythmias in patients

with implanted defibrillators [111]. This non-biased measure demonstrated increased

tachyarrhythmias at 9AM. A further study objectively ensured that a myocardial

infarction occurred in patients presenting with symptoms by measurement of creati-

nine kinase [116], and confirmed that myocardial infarctions occur 2 to 3 times more

frequently in the morning than in the late evening (Figure 4.1.1).

Data from these studies also indicate that sleep or some component associated

with sleep (e.g., posture and/or inactivity) has a cardioprotective effect even after

correcting for time weighted averages. On the other hand, many researchers have

studied the possible behavioral stressors that may be involved in this pattern as

they occur at specific times of day, such as arousal from sleep [13, 117], postural

changes [118, 119], or exertion [119–123].

In recent years neurophysiologists have begun to determine some of the prin-

cipal elements involved in orchestrating the sleep-wake and circadian cycles. For

instance, the basal forebrain [124, 125], the ventero-lateral [126] preoptic area of hy-

pothalamus, orexin neurones (lateral hypothalamus perifornical area) [127] and the

tubero-mamillary nuclei [128] are required for normal sleep-wake regulation and the

suprachiasmatic nuclei of the hypothalamus for circadian regulation [129, 130]. To

complement these neurophysiological studies, numerous physiological systems have

been found to be affected by sleep and/or circadian rhythms [131–136]. Previous

studies have established a link between the circadian cycle and basic response func-

tions of the autonomic nervous system [137–141], and recently the intrinsic neural
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pathways through which the endogenous circadian pacemaker influences both sympa-

thetic and parasympathetic autonomic output have been discovered [142]. However,

the specific mechanisms of interaction between the circadian pacemaker and cardiac

neuroautonomic control remain unknown.

4.1.2 Experimental Methods of Assessment of Intrinsic Cir-

cadian Factors Versus Behavioral Factors

Surprisingly, the contribution from the internal body clock (circadian pacemaker)

to this day/night pattern of cardiovascular events has never been studied with ap-

propriate techniques. We and others, have demonstrated that the human circadian

pacemaker (suprachiasmatic nuclei of the hypothalamus) functions to entrain many

neurocognitive [132, 143–145], behavioral [146, 147] and physiological [138, 148] sys-

tems to the 24-h solar day. To assess circadian rhythmicity two complementary

protocols have been developed in Dr. Czeisler’s laboratory.

First, a constant routine protocol involves measurements during >24 hours of

constant behavioral and environmental conditions [88, 148]. In brief, after 2 adap-

tation days and nights in the Intensive Physiological Monitoring Suite at Brigham

and Women’s hospital, subjects awaken and remain in temporal isolation, semi-

recumbent (35o head up), are not allowed out of bed, have restricted movement and

have controlled dietary intake for a 40-h period (identical snacks every 2 hours).

Room temperature is held at 23 ± 1oC, light is very low and constant at 3-lux an-

gle of gaze. Thus, changes in physiologic parameters are assessed independent of

sleep/wake rhythms, posture changes or exercise. Data are aligned to the endoge-

nous circadian core body temperature (CBT) rhythm such that each measurement

is assigned a circadian phase (with the minimum CBT assigned a phase of 0-degrees,

usually occurring around 5AM). Using this protocol, our preliminary results are the

first to demonstrate intrinsic circadian patterns in cardiac sympathetic and parasym-
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pathetic tone independent of changes in posture, activity or sleep/wake state (see

Preliminary studies). There was a peak in endogenous circadian sympathetic dis-

charge and a decrease in vagal tone at a biological clock time around 9AM - the

period of greatest cardiovascular vulnerability.

The second protocol is the “forced desynchrony” protocol. Over the last 18 years

Dr. Czeisler has developed this protocol as a tool to detect distinctions between

circadian and sleep/wake cycle related effects on many physiological functions that

exhibit a diurnal rhythm including CBT, plasma cortisol, melatonin, alertness and

sleep patterns [87, 132]. As one example of the use of this forced desynchrony pro-

tocol, Dr. Czeisler’s group recently demonstrated that the period of the circadian

pacemaker in adult humans is ≈ 24.18 hour. This result is substantially different

from the 25 hour value that was previously believed to be the circadian period, based

on experiments that were confounded by light exposure, which can reset the circa-

dian clock. Such information is necessary to be able to assign a circadian phase to

data collected in the proposed study.

Using these protocols, Drs. Czeisler and Shea have shown different circadian,

sleep-wake cycle and activity-level related influences on physiological functions such

as body temperature, pulmonary mechanics and plasma cortisol [138–141, 148, 149].

The focus of the proposed research is to determine and quantify the degree to which

these factors may impact indices of cardiovascular risk in young and older healthy

subjects.

4.1.3 Concepts and Approaches from Statistical Physics

We use multivariate data sets collected during these two protocols and under free-

running conditions to determine circadian, sleep-wake and activity effects on the

mechanisms of cardiac regulation and to extract static and dynamical markers of

cardiac instability. To probe how complex mechanisms of cardiac regulation change
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with circadian phase or with sleep-wake transitions and behavioral factors such as

variations in activity level, we propose an innovative approach based on concepts

and methods derived from statistical physics, fractal theory and non-linear dynam-

ics. The traditional approach considers physiological systems to be governed by the

classical principle of homeostasis which postulates that physiological systems return

to equilibrium after perturbation and that linear causality controls the pathways of

physiological interaction [150–153]. Such classical systems are often characterized by

a single dominant time scale.

Empirical observations, however, show that even under healthy basal conditions,

physiologic systems exhibit noisy fluctuations [154–157] resembling those found in

physical dynamical systems away from equilibrium.However, they are traditionally

ignored in physiological and clinical studies, which are usually based on averaged

data. Do such “nonequilibrium” fluctuations simply reflect the fact that physiologic

systems are being constantly perturbed by external and intrinsic noise? Or, do they

contain useful, “hidden” information about the underlying nonequilibrium control

mechanisms?

4.2 Circadian effect on heart dynamics

4.2.1 Static properties

As a first step we have investigated how static characteristics such as the average

interbeat interval and the standard deviation change with circadian phase. We have

analyzed continuous heartbeat recording from 5 healthy subjects during six 28-hour

cycles of forced desynchrony routine (See Appendix .6). Data were divided in seg-

ments of one hour, and the average interbeat interval and standard deviation were

calculated for each segment. One plausible hypothesis is that the average heart rate

and standard deviation will only change with sleep or wake phase, being lower during
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sleep. Surprisingly, we find that the average interbeat interval and the standard devi-

ation exhibit strong circadian rhythm independent of sleep or wake phase (Fig. 4.2).

Further, we find that static characteristics are significantly higher in the interval

260 - 360 degrees circadian phase (which corresponds to 2-4AM the traditional sleep

phase) with a maximum at ≈ 0 circadian degree when the body temperature is low-

est. Our findings suggest the existence of an endogenous circadian rhythm which

alters the heartbeat according to inherent “memory” of the traditional sleep oppor-

tunity when heart rate is lower and the probability for large interbeat fluctuations

is higher.

Such circadian mediated decrease of the average heart rate coupled with increase
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Fig. 4.2. Endogenous circadian variations in the average and the stan-
dard deviation of RR intervals. Group average of 5 subjects’ data collected
throughout a 10 day forced desynchrony protocol in dim light, in which sub-
jects’ sleep/wake cycles were adjusted to 6 consecutive 28 hour periods. Dark
bars represent the usual sleep period. Data are double plotted to enhance
visualizations of rhythms. Cosinor analysis fits are shown as lines with re-
gression coefficient of R2 = 0.8 for the RR interval data points and R2 = 0.6
for the standard deviation. Note, there exist significant circadian variations
in the average in RR interval (Student t-test p = 3.62×10−10) and standard
deviation (Student t-test p = 6.25 × 10−5) with the peak occurring during
the usual sleep periods.
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of the standard deviation (larger amplitude of interbeat fluctuations) between 2-4AM

suggests reduced sympatho-vagal balance which may be cardio-protective.

4.2.2 Dynamic properties

4.2.2.1 Long-range correlations

Previous studies have found the presence of scale-invariant behavior characterized

by long-range power-law correlations in the fluctuations of heartbeat intervals over

multiple time scales [13, 19, 56]. Such a scaling behavior indicates the presence of

a self-similar (fractal) hierarchical organization in the seemingly “erratic” heartbeat

fluctuations, even when data was recorded under free-running conditions. Further

studies have also observed significant alterations of the long-range correlation prop-

erties with disease and with sleep-wake transitions (as quantified by different values

of the scaling exponent α, Sec. 1). These findings raise the intriguing possibility that

changes in the mechanism of control associated with behavioral sleep-wake transi-

tion may be responsible for the increased cardiac instability observed in particular

circadian phases [13, 83].

An additional hypothesis is that there is a circadian clock, independent of the

sleep-wake cycle, which affects the cardiac dynamics. Previous studies of the B&W

group show different levels of sympathetic and parasympathetic tone during short-

term response to extrinsic stimulation at different circadian phases [141]. We test

whether the long-term mechanism of cardiac control changes with circadian phase,

and how such change may account for the 9-11am window of cardiac instability. To

this end, we investigated whether the scaling behavior of the heartbeat fluctuations,

which probes the dynamics over a broad range of time scales, changes when healthy

subjects sleep at different circadian phases. Since the scaling exponent we found for

healthy subjects during sleep is lower than for subjects with congestive heart fail-

ure [13], an increase in the value of the scaling exponent during sleep would indicate
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cardiac instability mediated by the circadian rhythm. On the other hand, if the

scaling exponent remains the same throughout different circadian phases, this would

indicate no circadian influence during sleep on the long-term multiscale mechanisms

of cardiac regulation.

As a first step, we analysed continuous recordings from 5 healthy subjects dur-

ing 7 cycles of forced desynchrony routine wherein subjects’ sleep-wake cycles are

adjusted to 28 hours so that their behaviors occur across all circadian phases. Heart-

beat data were divided into one-hour segments. For each segment, we estimated

the scaling exponent using the DFA method, thus probing the correlation proper-

ties in the heartbeat fluctuations at different circadian phase. Since the sleep and

wake contributions are equally weighted, a change of the values of the scaling expo-

nent α with circadian phase would suggest a circadian rhythm. Our results show a
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Fig. 4.3. Significant change of the correlation exponent as function of
circadian phase with a pronounced peak at 60 circadian degrees (≈ 9 − 10
AM) indicates relative loss of control (closer to ”random-walk” type fluctu-
ations) and increased cardiac risk. We note that an increased value of α is
observed for subjects with congestive heart failure. The data are shown as
symbols, and cosinor analysis fits are shown as a line.
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strong circadian-mediated alteration in the correlations characterized by a significant

change (Student test p-value 6.25 × 10−5) in the value of the exponent α (Fig. 4.3).

Remarkably, the peak of this circadian variation is centered at 60 degrees, coinciding

with the 9-11am window of cardiac risk [102, 115, 158, 159].

We note that an increase in the value of the correlation exponent α has been

also observed under specific perturbations and pathologic conditions such as heart

failure, suggesting alteration and loss of cardiac control. Thus our preliminary find-

ings indicate that circadian influences could be responsible for cardiac risk. This

risk appears to be mediated through changes in the endogenuous mechanism of car-

diac neuroautonomic regulation since it is accompanied with loss of scale-invariant

temporal structure in heart rate variability. Recent reports [142] of separate neu-

ronal links between the intrinsic circadian pacemaker (suprachiasmatic nucleus) and

the pre-sympathetic and pre-parasympathetic neurons corroborate our hypothesis of

mechanistic action between the circadian clock and the neuroautonomic regulation

of the heart. Further, risk for cardiac instability may be even higher for subjects

with pathologic conditions, where circadian effects may contribute to already exist-

ing perturbations in cardiac neuroautonomic control.

4.2.2.2 Nonlinear features

Studies show that the magnitude of the heartbeat interval increments |∆RR| exhibits

power-law scaling behavior and is positively correlated (αmag ≈ 0.75 > 0.5, [26], un-

like the original heartbeat increment time series ∆RR that is anticorrelated (α ≈
0) [13, 19]. Positive correlations in the magnitude series indicate that an increment

with a large magnitude is more likely to be followed by an increment with a large

magnitude. Recent studies also established that the magnitude series relates to the

nonlinear properties of the original time series, and that the value of the scaling

exponent characterizing the correlations in the magnitude series is related to the

width of the multifractal spectrum [81, 82, 164]. For patients with congestive heart
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failure, we observed a significant decrease in the short-range scaling exponent, which

may be related to perturbed vagal control affecting relatively high frequency fluctua-

tions. The simultaneous decrease observed for the long-range scaling exponent αmag

with heart failure indicates weaker correlations and loss of nonlinearity that may be

related to impaired feedback mechanisms of neurohormonal cardiac regulation [26].

Since loss of nonlinearity is related to impaired mechanism of cardiac regula-

tion [26, 165], oscillations of nonlinear markers with circadian phase would suggest

time windows of cardiac instability. Next we employ detrended fluctuation analysis

(See Chapter .1) to quantify the correlations in magnitude of heartbeat increment

at different circadian phases during sleep state. Our analysis shows that indeed a

circadian rhythm exists in cardiac dynamics during sleep. While previous studies
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Fig. 4.4. (Left) Previous work shows that there is a circadian rhythm in
the high frequency component (very short time scale) of the power spectrum
of heart rate variability while wake, yet there is no detectable circadian
rhythm during sleep. (Right) In contrast, the magnitude and sign approach
is sensitive enough to detect circadian rhythms in the dynamics of cardiac
system during sleep. Figure shows the magnitude scaling exponent αmag

across circadian phase for 2 young and healthy individuals measured during
sleep. This graph illustrates that both of these individuals have a minimum
value of the scaling exponent characterizing the magnitude of heart rate
fluctuations at 60-degree, which is 9-11AM.



80

based on standard linear measures such as the power-spectrum analysis were not

able to detect circadian rhythms, our nonlinear magnitude and sign method reveals

a clear circadian pattern (Fig. 4.2.2.2). In particular, we find that the magnitude of

heartbeat fluctuations during sleep is characterized by a lower value of the scaling

exponent at a 60-degree circadian phase (9-11AM), and by a higher exponent at

180 - 240 degrees (6-10PM). A decrease in the magnitude exponent (obtained from

the magnitude of the heart rate fluctuation) in the time window around 9-11AM

indicates a period of cardiac vulnerability.

4.3 Circadian effect on human motor activity

It is a general belief that the circadian pacemaker influences human activity. How-

ever, it is not clear that the circadian pacemaker affect through its interaction with

sleep/wake cycle or has direct and independent influences on human activity. The

answer to this question will further help to demonstrate that circadian pacemaker

has independent influences on cardiac dynamics, rather than affect through medi-

ating the activity level. To this end,we analyze the activity data recorded in the

forced desynchrony protocol (Appendix .6) to investigate statistical properties at

different circadian phases. We use body temperature as a circadian phase marker

(see Appendix .6) [96, 160].

4.3.1 Static properties

When examining static characteristics such as the mean activity level and standard

deviation, we uncovered a significant circadian rhythm (Fig. 4.3.1a). This rhythm is

characterized by broad peaks for the average activity level and the standard devia-

tion of activity fluctuations at 160-240 circadian degrees corresponding to afternoon

hours. The very gradual increase of these two static characteristics in the morning
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hours does not support the hypothesis of circadian mediated influence of activity on

cardiac vulnerability in the time window 9-11am.
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Fig. 4.5. Zero degrees are equivalent to the core body temperature minima.
Group average 6 subjects’ data collected throughout a 8 day forced desyn-
chrony protocol in which the sleep-wake cycles were adjusted to 28-hour
periods. Mean level and standard deviation during wakefulness at different
circadian phase. P-test gives p = 0.0006 for mean level and p = 0.00009
for standard deviation, indicating highly significant circadian influences on
mean and standard deviation of activity during wakefulness with peaks in
the afternoon hours.

4.3.2 Dynamic properties

To provide further insight into cardiac influences on the dynamic control, we next

examined the temporal organization in the fluctuations of activity values at different

circadian phases. We performed DFA analysis (i) on activity signals to quantify the

long-range power-law correlations (See Chapter 3.3.3), and (ii) on the magnitude

series of activity increments to probe the nonlinear features related to Fourier phase

interactions (See Chapter 3.3.4). Our results show that the scaling and nonlinear

features in the temporal organization of activity fluctuations (Chapter 3.3.3) does
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not change with circadian phase (Fig 4.3.2a, b).
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Fig. 4.6. (a) Group averaged deviation of α from its mean value, basing on
the DFA analysis. (b) Group average deviation of αmag from its mean value
basing on the magnitude analysis. P-test gives p > 0.01 for α, and p = 0.04
for αmag obtained from the magnitude analysis, indicating no significant
circadian influence on the scaling and nonlinear features of wrist activity
(Figs. 3.5).

4.4 Discussion

Our analyses show that there is a complex robust structure embedded in physiologic

fluctuations which remain invariant when data are probed over a broad range of time

scales. In heartbeat dynamics, such scale-invariant behavior relates to the underlying

neuroautonomic control mechanism, since key fractal and nonlinear features appear

to be independent of activity level (daily or constant routine) but change with sym-

pathetic or parasympathetic blockade and under pathologic conditions. Further, our

preliminary observations show that these scaling features change with sleep-wake

transitions, and are influenced by an endogenous circadian rhythm when decoupled

from the sleep-wake cycle. Remarkably, we found that the circadian influence at 9-

11AM, corresponding to the epidemiologically demonstrated time window of cardiac

vulnerability, is associated with loss of long-range correlation and loss of nonlinearity
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in cardiac dynamics — features observed also under certain pathologies (e.g., con-

gestive heart failure). Thus, our preliminary results suggest that the endogenous

circadian pacemaker may be related to cardiac risk.



Part V

Cerebral Control Mechanism
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Chapter 5

Synchronization Patterns in

Cerebral Blood Flow and

Peripheral Blood Pressure under

Minor Stroke

5.1 Overview

Stroke is a leading cause of death and disability in the United States. The autoreg-

ulation of cerebral blood flow that adapts to changes in systemic blood pressure is

impaired after stroke. We investigate blood flow velocities (BFV) from right and

left middle cerebral arteries (MCA) and beat-to-beat blood pressure (BP) simulta-

neously measured from the finger, in 13 stroke and 11 healthy subjects using the

mean value statistics and phase synchronization method. We find an increase in the

vascular resistance and a much stronger cross-correlation with a time lag up to 20

seconds with the instantaneous phase increment of the BFV and BP signals for the

subjects with stroke compared to healthy subjects [166].
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5.2 Introduction to this chapter

Stroke is a leading cause of death and disability in people above certain age[167], yet

many factors that set the stage for stroke and determine the outcome after stroke

are not well understood.

Cerebral autoregulation involves several complex mechanisms maintaining steady

blood flow to the brain in the presence of systemic blood pressure fluctuations. These

mechanisms are impaired after an acute stroke and cerebral blood flow becomes

dependent on blood pressure[168, 169]. Therefore, cerebral blood flow declines with

falling blood pressure (which may lead to ischemia) and increases with rising blood

pressure (which poses a risk of hemorrhage). Activities of daily living, such as rest

and exercise, sitting and standing-up, even taking meals are associated with blood

pressure fluctuations on a range of time scales. For example, standing-up may induce

transient hypotension, which requires rapid cerebral vasodilatation to compensate for

blood pressure decline and to maintain cerebral perfusion in the upright position[170].

This complex mechanisms of cerebral regulation is still not well understood. It is

also not clear if cerebral autoregulation recovers after stroke[171]. Previous studies

suggest that cerebral blood flow declines on the stroke side during orthostatic stress,

posing a risk of reduced perfusion to the affected side of the brain[172].

Here we study the effects of stroke on cerebral autoregulation controlling the flow-

pressure relationship. Our goal is to determine the effects of orthostatic stress on

the dynamic relationship between blood flow velocities (BFV) in the middle cerebral

arteries and the peripheral blood pressure (BP) from healthy subjects and patients

with stroke. We find that the dynamics of flow-pressure regulation is impaired after

a stroke and we determine indices allowing us to characterize and quantitate healthy

cerebral autoregulation and its impairment after stroke.
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5.3 Experimental design and data acquisition

5.3.1 Study groups

In our study we have:

• 13 patients (six male, seven female) with documented chronic ischemic minor

stroke on MRI or CT (age 52.5 ± 7.3 years);

• 11 healthy subjects (age 47.2 ± 8.5 years).

5.3.2 Experimental protocol

All subjects participated in the following experimental protocol:

• Supine: subject rests in supine position for five minutes on the tilt table;

• Tilt: the table is moved upright to an 80 degree angle and the subject is in an

upright position for five minutes;

• (Tilt) Hyperventilation: subject is asked to breathe quickly at approximately

1 Hz frequency for three minutes in an upright position. Hyperventilation

induces hypocapnia (reduced carbon dioxide), which is associated with vaso-

constriction;

• (Tilt) CO2-rebreathing: The subject is asked to inhale deeply and hold the

breath for one minute, then breathe a mixture of air and 5% CO2 from re-

breathing circuit at a comfortable frequency for three minutes in an upright

position. CO2 rebreathing increases carbon dioxide above normal levels and

induces hypercapnia, which is associated with vasodilatation.
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5.3.3 Data acquisition

Blood flow velocity (BFV):

Transcranial Dopplerultrasonography system (MultiDop X4, Neuroscan, Inc.) is

used for monitoring BFV in both MCAs. The right and left MCA is insonated from

the temporal windows by placing the 2-MHz probe in the temporal area above the

zygomatic arch. Each probe is positioned to record the maximal BFV and fixed

at a desired angle using a three-dimensional positioning system attached to the

light-metal probe holder. Special attention is given to stabilize the probes, since

their steady position is crucial for continuous BFV recordings. Data are visually

inspected and occasional extrasystoles and outlying values are removed using linear

interpolation. A Fourier transform of the Doppler shift [a difference between the

frequency of the emitted signal and its echo (frequency of reflected signal)] is used to

calculate BFV. Systolic, diastolic, and mean BFV are detected from the envelope of

MCA waveforms. A recent MRI study suggests that MCA diameter does not change

during hyperventilation and breath-holding[173].

Blood pressure (BP):

Beat-to-beat BP is recorded from the finger with a Finapres device (Ohmeda Mon-

itoring Systems, Englewood CO). With the finger positioned at the heart level and

the temperature kept constant, this device can reliably track BP changes over a pro-

longed period of time[174].

BFV and BP signals are recorded simultaneously and the signal sampling frequency

is 50 Hz.

5.4 Data

We first investigate the shape of BFV and BP signals for both healthy and stroke

group during four experimental stages. The BFV waveform changes during vaso-
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Fig. 5.1. Right BFV, left BFV, and BP signals during tilt stage: (Left)
One healthy subject; (Right) One subject with stroke located in the right
brain hemisphere. BFV and BP signals have a similar shape and both are
periodic signals with a period of around one second, which reflects flow and
pressure waveform during each heart beat. Data from the stroke patient
exhibit larger amplitude for the BFV signals and less pronounced second
notch in the BP waveform.

constriction and vasodilation and therefore, we presume to be able to identify the

subjects with impaired autoregulation.

In Fig. 5.1, we show examples of BFV signals from right and left MCA as well

as BP signals from the finger during the tilt stage for one healthy subject and one

stroke subject. For both subjects, right and left BFV signals and BP signals display

a periodic behavior with a period of around one second, corresponding to heart

frequency. Furthermore, for each subject, the shape of two BFV signals and one BP

signal all look similar (especially for two BFV signals): a rapid increment of signals

at the beginning of each circle and then a slow recovery in the rest of each circle.

We also find some differences in the shape of three signals between the two subjects

shown in Fig. 5.1, however, we fail to find any group differences in the shape of signals
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for the group of 13 stroke subjects and the group of 11 healthy subjects. Therefore,

such differences seem to be reflecting only trivial individual variability for different

subjects. In summary, the shape of signals is not a good marker for distinguishing

stroke patients from healthy people.

In the next section, time domain analysis and synchronization techniques will be

applied to each subject to characterize two BFV signals and one BP signal.

5.5 Results

5.5.1 Time domain

Several quantities have been used to quantify the properties of BFV and BP sig-

nals and the possible relations between them. For example, we have measured the

magnitude of fluctuation (i.e., standard deviation) of BFV and BP signals for all

subjects. From Fig. 5.1, one may infer that the signals for stroke patients have a

larger standard deviation, and the BFV signals on the stroke side (e.g., right or left

side in the brain) have a slightly smaller standard deviation compared to the normal

side. However, in any of the four stages, we did not find any group differences for

the standard deviation between these two groups. The different standard deviation

between subjects seems to be more an indication of the individual variabilities in

each subject than the indication of disease.

Instead, we find that the mean of signals in the tilt stage is a good quantity for

determining the differences between healthy and stroke groups. As shown in Fig. 5.2,

we find that in the tilt stage, most stroke patients have relatively lower BFV in MCA.

More interesting, the exceptions, e.g., the 1st, 2nd, 4th, and the last stroke patients

in Fig. 5.2, are all female patients. Therefore, the mean of signals during tilt is

a good marker for male stroke patients, but only a fair marker for female stroke

patients. However, the relationship between the stroke type, size and location and
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Fig. 5.2. Mean values of BFV and BP signals during four experimental
stages for all 24 subjects in our database. The x axis indicates the subject
index, healthy subjects are to the left of vertical dash line and stroke pa-
tients are to the right. We find that in the tilt stage most stroke patients
have relatively lower BFV. Note that increased relative difference between
the BFV and BP mean values for the stroke patients compared to healthy
subjects.

co-morbidities (e.g., hypertension) needs to be examined before conclusions can be

made about this gender effect.

Based on the results shown in Fig. 5.2, we further calculated the BP/BFV ratio of

the mean of signals for all subjects (see Fig. 5.3). In medical science, this ratio is often

called the vascular resistance — a parameter quantifying the elasticity of the arteries.

Our results suggest that the vascular resistance is increased after stroke. Vascular

resistance seems to provide a better quantitative distinction between healthy subjects

and stroke subjects than that from the mean of signals. As shown in Fig. 5.3, we find
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that during tilt, the ratios of most healthy subjects are below the ratio = 2 line, while

most the stroke patients ratios are above the ratio = 2 line. These results suggest

that stroke is associated with increased cerebrovascular resistance. Similar findings

are also observed in supine position, but the variability of inter-subjects observations

is also greater compared to the tilt. Vascular resistance during hyperventilation and

CO2 rebreathing is similar between groups.
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Fig. 5.3. The ratio of the BFV and BP mean values (i.e., vascular re-
sistance) during four stages for all 24 subjects in our database. Note that
during tilt, this ratio for most healthy subjects is below two (solid horizontal
line), while most stroke patients exhibit a ratio above two. Similar increase
in the vascular resistance is also observed in supine position.

Our results, in some sense, suggest that cerebral autoregulation has been impaired

for chronic stroke patients. In healthy subjects, peripheral vascular resistance is
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increased with an upright position, but cerebral vascular resistance is not changed,

due to autoregulation. With impaired autoregulation after stroke, cerebral vessels

react in a manner similar to the peripheral vessels and vascular resistance is increased,

which may result in reduced perfusion during orthostatic stress.

5.5.2 Synchronization technique

5.5.2.1 Theoretical background

Our Synchronization algorithm is based on the Hilbert Transform. The Hilbert

Transform of any signal f(x) is defined as the following:

F (y) =
1

π
(Cauchy Principal Value)

∫ ∞

−∞
f(x)

x − y
dx. (5.1)

F (y) has an apparent physical meaning in Fourier space: for any positive (negative)

frequency ω, the Fourier component of F (y) at ω is that of f(x) at ω after a 90◦

clockwise (anti-clockwise) rotation in the complex number plane. For example, if the

original signal is sinαx (α > 0), its Hilbert Transform will become cosαy.

Similar to the way we construct complex numbers, for any time series s(t) we can

always construct its “analytic signal” [175–179], which is defined as

s(t) + is̃(t) = A(t)eiφ(t), (5.2)

where s̃(t) is the Hilbert Transform of s(t). A(t) and φ(t) are the Hilbert ampli-

tude and phase of s(t), respectively. Both the Hilbert amplitude and phase provide

instantaneous attributes of a time series s(t).

For a pure sinusoid, the Hilbert amplitude is constant and the Hilbert phase is a

straight line over time. For more complex signals, both the Hilbert amplitude and

phase may display complicated forms. As shown in Fig. 5.4, the Hilbert amplitude

of the left BFV for a healthy subject has a similar periodic behavior to that of

the original signal, in all four experimental stages. The Hilbert phase of the left
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Fig. 5.4. Instantaneous Hilbert amplitude (left) and Hilbert phase (right)
of a filtered BFV signal from the left brain hemisphere (the filter is described
in section 5.5.2.2) for a healthy subject, during four experimental stages.
The Hilbert phase exhibits complex fluctuations along strong linear trends.
Simultaneous increase or decrease of the phase of the BFV and BP signals
is an indication of synchronization behavior (see Fig. 5.4).

BFV of that subject during all four experimental stages can be looked upon as the

superposition of a linear trend and additional fluctuations: the linear trend is trivial

since it is caused by a periodic heart rate at a frequency of around 1 Hz; fluctuations

are more important for us since they contain other useful information.

In practice, some filtering techniques are often needed before we calculate the

Hilbert Transform of a time series. Actually, the value of analytic signals in Eqn. (5.2)

can depend on the mean of s(t), i.e., s(t) and s(t) + a (a is a constant) may have
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different Hilbert amplitude and phase, though both original signals have almost

identical statistical properties. A simple way that may eliminate this effect is to

subtract the mean of a time series before we calculate the Hilbert amplitude and

phase. Due to similar reasons, the application of our algorithm on nonstationary

signals is also limited, since the mean of a nonstationary signal is changing over

time. To analyze a nonstationary signal, we often need to apply a Fourier high

frequency pass filter first to remove the effect of the mean and slow drift of local

mean in the signal before we calculate the Hilbert amplitude and phase.

5.5.2.2 Procedure

Our synchronization technique includes the following steps:

• First, we filter out low frequency trends in signals (high f pass filter f > 0.05

Hz is applied) and then normalize signals (let the standard deviation of signals

σ = 1);

• Next, we calculate the Hilbert amplitude and phase of filtered signals;

• Last, we calculate the cross-correlation between the BFV and BP signals for

both Hilbert amplitude and phase. Note that cross-correlation method will fail

if original signals contain linear trends (trends will contribute to the results,

but we are not interested in the effect of trends). To eliminate the linear trend

in the Hilbert phase (see Fig. 5.4), we instead calculate the cross-correlation of

the Hilbert phase increment of the BFV and BP signals.

5.5.2.3 Results

The technique described in Section 5.5.2.2 has been applied to all 13 stroke patients

and 11 healthy subjects. We find that, for the cross-correlation of both the Hilbert

amplitude and the phase increment of BFV and BP signals, stroke patients display
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Fig. 5.5. Cross-correlation function of the Hilbert phase increment for
the BFV and BP signals during four experimental stages. We find that
all 24 subjects separate into two categories which exhibit two very distinct
types of behavior. Type I (Left): low-amplitude cross-correlations which
decay at lags ≈ 5sec., during all four stages. Most healthy subjects (eight
out of eleven) belong to this type. Type II (Right): high-amplitude cross-
correlations for lags up to 20 seconds, suggesting strong synchronization.
Most stroke patients (eleven out of thirteen) belong to this type. We find
that the stage where the best distinction from Type I correlations is given
varies for different subjects.

different behavior from that of healthy subjects. Furthermore, cross-correlation of the

Hilbert phase increment often gives better results. In general, the cross-correlation

results have the following two types:

• Type I: As shown in the left figure of Fig. 5.5, the BFV and BP signals have

shorter correlation (less than 10 seconds). Most healthy subjects (eight out of

eleven) and a few stroke patients (two out of thirteen) belong to this type. The



97

stroke patients who belong to this type are both female;

• Type II: As shown in the right figure of Fig. 5.5, the BFV and BP signals

have much longer sustained correlation (larger than 10 seconds). Most stroke

patients (eleven out of thirteen) and a few healthy subjects (three out of eleven)

belong to this type. The stage where the best distinction from Type I corre-

lation is given varies for different subjects.

The short Type I correlations (less than 10 seconds) can usually be attributed to

the effect of heart rate and/or respiration — i.e., it reflects the effect of other body

regulations (similar to a kind of “background noise”) on both BFV and BP signals

and is beyond our interest. The longer Type II correlation, however, cannot be

attributed to the effect of other regulations, instead, it may really reflect the functions

of vascular tone. In other words, it may describe the true correlations between the

BFV signals in MCA and peripheral BP signals. Therefore, the existence of such

Type II correlations may indicate impaired cerebral autoregulation for those subjects.

5.6 Conclusions

In our study we investigate blood flow velocity (BFV) signals measured from the right

and left middle cerebral arteries (MCA) and peripheral blood pressure signals, from

11 healthy subjects and 13 subjects with documented minor stroke. We compare the

properties of BFV and BP signals as well as synchronizations between BFV and BP

signals for both groups. Based on our special experimental protocol, we evaluate the

effect of minor chronic stroke on cerebral autoregulation and the effect of orthostatic

stress on the relations between BFV and BP signals in the healthy subject and the

stroke patient.

In time domain, we find that the standard deviation of BFV and BP signals during

different stages is similar for healthy subjects and stroke patients. However, we
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find that healthy subjects and stroke patients have different responses to orthostatic

stress, reflected by the mean BFV and BP values, as well as by the vascular resistance

( mean BP/mean BFV ratio). We find that cerebral vascular resistance is increased

in subjects with stroke, which suggests impaired autoregulation.

We also apply the synchronization method (based on the Hilbert transform) to

quantify the possible phase relations between the BFV and BP signals. We find

that the cross-correlations between the Hilbert phase increment of the BFV and BP

signals provide reliable quantitative indices that clearly distinguish stroke patients

from healthy subjects, even when the stroke is minor — a condition which is typically

difficult to diagnose. These indices for stroke patients show a strong and sustained

correlation between BFV and BP signals, which cannot be explained by heart rate

and/or respiration. Such synchronization pattern is not apparent in healthy subjects

and suggests impaired cerebral autoregulation for chronic stroke patients.

Using time domain analysis and the synchronization method, we are able to deter-

mine indices that can separate stroke patients from healthy subjects. These findings

are clinically relevant and can be used to identify patients with impaired autoregula-

tion who might be at risk of cerebral perfusion. They can be also used to distinguish

patients with transient ischemic attacks who have reversible flow abnormalities from

patients with permanent damage caused by the stroke.
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.1 Detrened fluctuation analysis

In this section, we review the algorithm of the DFA method, and in Appendix .2 we

compare the performance of the DFA with the classical scaling analysis —Hurst’s

analysis (R/S analysis)— and show that the DFA is a superior method to quantify

the scaling behavior of noisy signals.

To illustrate the DFA method (Fig. 6), we consider a noisy time series, u(i)

(i = 1, .., Nmax ). We integrate the time series u(i),

y(j) =
j∑

i=1

(u(i)− < u >), (3)

where

< u >=
1

Nmax

Nmax∑
j=1

u(i), (4)

and is divided into boxes of equal size, n. In each box, we fit the integrated time series

by using a polynomial function, yfit(i), which is called the local trend. For order-�
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Fig. 6. Description of detrended fluctuation analysis (DFA) method. (a)
The correlated signal u(i). (b) The integrated signal: y(k) =

∑k
i=1[u(i) −

〈u〉]. The vertical dotted lines indicate a box of size n = 100, the solid
straight lines segments are the estimated linear “trend” in each box by least-
squares fit.
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DFA (DFA-1 if � = 1, DFA-2 if � = 2 etc.), � order polynomial function should be

applied for the fitting. We detrend The integrated time series, y(i) by subtracting the

local trend yfit(i) in each box, and we calculate the detrended fluctuation function

Y (i) = y(i) − yfit(i). (5)

For a given box size n, we calculate the root mean square (rms) fluctuation

F (n) =

√√√√ 1

Nmax

Nmax∑
i=1

[Y (i)]2 (6)

The above computation is repeated for box sizes n (different scales) to provide a

relationship between F (n) and n. A power-law relation between F (n) and the box

size n indicates the presence of scaling: F (n) ∼ nα. The parameter α, called the

scaling exponent or correlation exponent, represents the correlation properties of the

signal: if α = 0.5, there is no correlation and the signal is an uncorrelated signal

(white noise); if α < 0.5, the signal is anticorrelated; if α > 0.5, there are positive

correlations in the signal.

.2 Noise

The standard signals we generate in our study are uncorrelated, correlated, and

anticorrelated noise. First we must have a clear idea of the scaling behaviors of

these standard signals before we use them to study the effects from other aspects.

We generate noises by using a modified Fourier filtering method[67]. This method

can efficiently generate noise, u(i) (i = 1, 2, 3, ..., Nmax), with the desired power-law

correlation function which asymptotically behaves as: < | i+t∑
j=i

u(j)|2 >∼ t2α. By

default, a generated noise has standard deviation σ = 1. Then we can test DFA and

R/S by applying it on generated noises since we know the expected scaling exponent

α.
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Fig. 7. Scaling behavior of noise with the scaling exponent α. The length of
noise Nmax = 217. (a) Rescaled range analysis (R/S) (b) Order 1 detrended
fluctuation analysis (DFA-1) (c) Order 2 detrended fluctuation analysis. We
do the linear fitting for R/S analysis and DFA-1 in three regions as shown
and get α1, α2 and α3 for estimated α, which are listed in the Table.0.1
and Table.0.2. We find that the estimation of α is different in the different
region.

Before doing that, we want to briefly review the algorithm of R/S analysis. For

a signal u(i)(i = 1, ..., Nmax), it is divided into boxes of equal size n. In each box,

the cumulative departure, Xi (for k-th box, i = kn + 1, ..., kn + n), is calculated

Xi =
i∑

j=kn+1

(u(j)− < u >) (7)
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where < u >= n−1
(k+1)n∑
i=kn+1

u(i) , and the rescaled range R/S is defined by

R/S = S−1

[
max

kn+1≤i≤(k+1)n
Xi − min

kn+1≤i≤(k+1)n
Xi

]
, (8)

where S =

√
n−1

n∑
j=1

(u(j)− < u >)2 is the standard deviation in each box. The

average of rescaled range in all the boxes of equal size n, is obtained and denoted

by < R/S >. Repeat the above computation over different box size n to provide a

relationship between < R/S > and n. According to Hurst’s experimental study[68],

a power-law relation between < R/S > and the box size n indicates the presence of

scaling: < R/S >∼ nα.

Figure 7 shows the results of R/S, DFA-1 and DFA-2 on the same generated

noises. Loosely speaking, we can see that F (n) (for DFA) and R/S (for R/S analysis)

show power-law relation with n as expected: F (n) ∼ nα and R/S ∼ nα. In addition,

there is no significant difference between the results of different order DFA except

for some vertical shift of the curves and the little bend-down for small box size n.

The bent-down for very small box of F (n) from higher order DFA is because there

are more variables to fit those few points.

Ideally, when analyzing a standard noise, F (n) (DFA) and R/S (R/S analysis)

will be a power-law function with a given power: α, no matter which region of F (n)

and R/S is chosen for calculation. However, a careful study shows that the scaling

exponent α depends on scale n. The estimated α is different for the different regions

of F (n) and R/S as illustrated by Figs. 7(a) and 7(b) and by Tables 0.1 and 0.2.

It is very important to know the best fitting region of DFA and R/S analysis in the

study of real signals. Otherwise, the wrong α will be obtained if an inappropriate

region is selected.

In order to find the best region, we first determine the dependence of the locally

estimated α, αloc, on the scale n. First, generate a standard noise with given scaling

exponent α; then calculate F (n) (or R/S), and obtain αloc(n) by local fitting of
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Table 0.1. Estimated α of correlation noise from R/S analysis in three
regions as shown in Fig.7(a). α is the input value of the scaling exponent,
α1 is the estimated in the region 1 for 4 < n ≤ 32, α2 in the region 2 for
32 < n ≤ 3162 and α3 in the region 3 for 3126 < n ≤ 217. Noise are the
same as used in Table.0.2.

α α1 α2 α3

0.1 0.44 0.23 0.12

0.3 0.52 0.37 0.23

0.5 0.62 0.52 0.47

0.7 0.72 0.70 0.45

0.9 0.81 0.87 0.63

Table 0.2. Estimated α of correlation noise from DFA-1 in three regions
as shown in Fig.7(b). α is the input value of the scaling exponent, α1 is the
estimated in the region 1 for 4 < n ≤ 32, α2 in the region 2 for 32 < n ≤ 3162
and α3 in the region 3 for 3126 < n ≤ 217.

α α1 α2 α3

0.1 0.28 0.15 0.08

0.3 0.40 0.31 0.22

0.5 0.55 0.50 0.35

0.7 0.72 0.69 0.55

0.9 0.91 0.91 0.69

F (n) (or R/S). Same random simulation is repeated 50 times for both DFA and

R/S analysis. The resultant average αloc(n), respectively, are illustrated in Fig.8 for

DFA-1 and R/S analysis.

If a scaling analysis method is working properly, then the result αloc(n) from
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Fig. 8. The estimated α from local fit. (a) R/S analysis, the length of
signal Nmax = 214. (b)R/S analysis, Nmax = 220. (c) DFA-1, Nmax = 214

(d) DFA-1, Nmax = 220. αloc come from the average of 50 simulations. If
a technique is working, then the data for scaling exponent α should be a
weakly fluctuating horizontal line centered about αloc = α. Note that such
a horizontal behavior does not hold for all the scales. Generally, such a
expected behavior begins from some scale nmin, holds for a range and ends
at a larger scale nmax. For DFA-1, nmin is quite small α > 0.5. For R/S
analysis, nmin is small only when α ≈ 0.7.

simulation with α would be a horizontal line with slight fluctuation centered about

αloc(n) = α. Note from Fig.8 that such a horizontal behavior does not hold for all

the scales n but for a certain range from nmin to nmax. In addition, at small scale,

R/S analysis gives αloc > α if α < 0.7 and αloc < α if α > 0.7, which has been

pointed out by Mandelbrot[69] while DFA gives αloc > α if α < 1.0 and αloc < α if
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α > 1.0.

It is clear that the smaller the nmin and the larger the nmax, the better the method.

We also perceive that the expected horizontal behavior stops because the fluctuations

become larger due to the under-sampling of F (n) or R/S when n gets closer to the

length of the signal Nmax. Furthermore, it can be seen from Fig.8 that nmax ≈ 1
10

Nmax

independent of α (if the best fit region exists), which is why one tenth of the signal

length is the maximum box size when using DFA or R/S analysis.
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Fig. 9. The starting point of good fit region, nmin, for DFA-1 and R/S
analysis. The results are obtained from 50 simulations, in which the length
of noise is Nmax = 220. The condition for a good fit is ∆α = |αloc−α| < 0.01.
The data for α > 1.0 shown in the shading area are obtained by applying
analysis on the integrations of noises with α < 1.0. It is clear that DFA-1
works better than R/S analysis because its nmin is always smaller than that
of R/S analysis.

On the contrary, nmin does not depend on the Nmax since αloc(n) at small n hardly

changes as Nmax varies but it does depend on α. Thus, we obtain nmin quantitatively

as shown in Fig.9. For R/S analysis, only for α ≈ 0.7, nmin is small; for α a little away

from 0.7 (for example, 0.5), nmin becomes very large and close to nmax, indicating

that the best fit region will vanish and R/S analysis does not work at all. Comparing
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to R/S, DFA works better since nmin is quite small for α > 0.5 correlated signals.

One problem remains for DFA, nmin for small α (≤ 0.5) is still too large comparing

to those for large α(> 0.5). We can improve it by applying DFA on the integration

of the noise with α < 0.5. The resultant new expected α
′
for the integrated signal

would be α
′
0 = α + 1, while the nmin for the integrated signal becomes much smaller

as shown also in Fig.9(shading area α > 1). Therefore, for a noise with α < 0.5, it is

best to estimate the scaling exponent α
′
of the integrated signal first and then obtain

α by α = α
′ −1. This is what we did in the following sections to those anticorrelated

signals.

.3 Superposition law for DFA

For two uncorrelated signals f(i) and g(i), their root mean square fluctuation func-

tions are Ff (n) and Fg(n) respectively. We want to prove that for the signal f(i) +

g(i), its rms fluctuation

Ff+g(n) =
√

Ff (n)2 + Fg(n)2 (9)

Consider three signals in the same box first. The integrated signals for f , g and

f + g are yf (i), yg(i) and yf+g(i) and their corresponding trends are yfit
f , yfit

g ,yfit
f+g

(i = 1, 2, ..., n, n is the box size). Since yf+g(i) = yf (i) + yg(i) and combine the

definition of detrended fluctuation function Eq.5, we have that for all boxes

Yf+g(i) = Yf (i) + Yg(i), (10)

where Yf+g is the detrended fluctuation function for the signal f + g, Yf (i) is for the

signal f and Yg(i) for g. Furthermore, according to the definition of rms fluctuation,

we can obtain

Ff+g(n) =

√√√√ 1

Nmax

Nmax∑
i=1

[Yf+g(i)]
2 (11)
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=

√√√√ 1

Nmax

Nmax∑
i=1

[Yf (i) + Yg(i)]
2,

where � is the number of boxes and k means the kth box. If f and g are not correlated,

neither are Yf (i) and Yg(i) and, thus,

Nmax∑
i=1

Yf (i)Yg(i) = 0. (12)

From Eq.12 and Eq.12, we have

Ff+g(n) =

√√√√ 1

Nmax

Nmax∑
i=1

[Yf (i)2 + Yg(i)2]

=
√

[Ff (n)]2 + [Fg(n)]2. (13)

.4 DFA-1 on linear trend

Let us suppose a linear time series u(i) = ALi. The integrated signal yL(i) is

yL(i) =
i∑

j=1

ALj = AL
i2 + i

2
(14)

Let as call Nmax the size of the series and n the size of the box. The rms fluctuation

FL(n) as a function of n and Nmax is

FL(n) = AL

√√√√√ 1

Nmax

Nmax/n∑
k=1

kn∑
i=(k−1)n+1

(
i2 + i

2
− (ak + bki)

)2

(15)

where ak and bk are the parameters of a least-squares fit of the k-th box of size

n. ak and bk can be determined analytically, thus giving:

ak = 1 − 1

12
n2 +

1

2
n2k +

1

12
n − 1

2
k2n2 (16)

bk = 1 − 1

2
n + kn +

1

2
(17)
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With these values, FL(n) can be evaluated analytically:

FL(n) = AL
1

60

√
(5n4 + 25n3 + 25n2 − 25n − 30) (18)

The dominating term inside the square root is 5n4 and then one obtains

FL(n) ≈
√

5

60
ALn2 (19)

leading directly to an exponent of 2 in the DFA. An important consequence is that,

as F (n) does not depend on Nmax, for linear trends with the same slope, the DFA

must give exactly the same results for series of different sizes. This is not true for

other trends, where the exponent is 2, but the factor multiplying n2 can depend on

Nmax.

.5 DFA-1 on Quadratic trend

Let us suppose now a series of the type u(i) = AQi2. The integrated time series y(i)

is

y(i) = AQ

i∑
j=1

j2 = AQ
2i3 + 3i2 + i

6
(20)

As before, let us call Nmax and n the sizes of the series and box, respectively. The

rms fluctuation function FQ(n) measuring the rms fluctuation is now defined as

FQ(n) = AQ

√√√√√ 1

Nmax

Nmax/n∑
k=1

kn∑
i=(k−1)n+1

(
2i3 + 3i2 + i

6
− (ak + bki)

)2

(21)

where ak and bk are the parameters of a least-squares fit of the k-th box of size n.

As before, ak and bk can be determined analytically, thus giving:

ak =
1

15
n3 + n3k2 − 7

15
n3k +

17

30
n2k − 7

60
n2 +

1

20
n − 2

3
k3n3 − 1

2
n2k2 +

1

15
kn (22)
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bk =
3

10
n2 + n2k2 − n2k + kn − 2

5
n +

1

10
(23)

Once ak and bk are known, F (n) can be evaluated, giving:

FQ(n) = AQ
1

1260

√
−21 (n4 + 5n3 + 5n2 − 5n − 6) (32n2 − 6n − 81 − 210Nmax − 140N2

max)

(24)

As Nmax > n, the dominant term inside the square root is given by 140N2
max ×

21n4 = AQ2940n4N2
max, and then one has approximately

FQ(n) ≈ AQ
1

1260

√
2940n4N2

max = AQ
1

90

√
15Nmaxn

2 (25)

leading directly to an exponent 2 in the DFA analysis. An interesting consequence

derived from Eq. (25) is that, FQ(n) depends on the length of signal Nmax, and the

DFA line (log FQ(n) vs log n) for quadratic series u(i) = AQi2 of different Nmax does

not overlap (as is the case for linear trends).
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.6 Protocol and Measurements

To date our B&W collaborators (Drs. Shea and Czeisler) have collected complete (i)

forced desynchrony protocol data on 14 healthy subjects(19-32 years, mean 23 years)

and 17 elderly subjects (56-78 years, mean 69 years), and (ii) constant routine data

on 14 young subjects (19-44 years, mean 27 years) and 11 elderly subjects (65-76

years, mean 71 years). These data were collected under funded grants (R01 HL64815,

HL62149 and AG0607212). Some subjects completed both protocols, such that there

are a total of 31 individuals (see page 51). Based on our preliminary findings, and

using the DFA exponent α as our primary variable that has the most intra-subject

variability (S.D. = 0.10), we have calculated that to detect physiologically important

difference between circadian phases or between groups (p value = 0.05: difference

between heart failure and controls = 0.2), we need to study at least 10 subjects.

Since we have between 11 and 17 subjects in each group and protocol, we are confi-

dent that the available data set is sufficiently large to answer our specific aims. The

primary signals collected that we propose to include in our analysis are (1) EKG,

(2) activity, and (3) blood pressure. Core body temperature (CBT) was collected

continuously, and will be used to establish the circadian phase. Additionally, during

each scheduled sleep period full polysomnography (PSG) was performed, which in-

cludes measurements of: (a) four-channel EEG, right and left EOG, submental EMG

(used to establish sleep stage); (b) EKG. The PSG measurements will be used to

establish sleep-wake and sleep stage effects (independent of the circadian rhythm)

on cardiovascular variables.

.6.1 Establishing a Regular Sleep / Wake / Exercise Baseline

Schedule

To ensure the initial stability of circadian rhythms and sleep patterns, subjects are

required to maintain a regular sleep-wake schedule for 2 weeks prior to admission to



112

the laboratory. The bedtime are determined as the subjects’ habitual bedtime with

8-h time in bed. To ensure compliance to this schedule, each subject is monitored

with ambulatory actigraphy (Actiwatch AW-64, Minimitter Co. Inc., OR, US).

.6.2 Laboratory Environment for Forced Desynchrony and

Constant Routine Protocols

Day

1

2

3

4

5

6

7

8

9

10

22:00 22:0010:004:00 16:00

Time

Day

1

2

3

4

22:00 10:004:00 16:00

Time

Subject returns home

Constant routine

Fig. 10. Sleep/wake schedule

Subjects are isolated from external time cues, including clocks, radios, television,

personal computers, visitors, and sunlight, but maintain contact with staff members

. Room temperature is maintained at 23±1◦C. The experimental suites are equipped

with hand-held terminals for event recording, a porthole for 24 h blood sample collec-

tion without disturbing the subjects’ sleep, and a video camera and a voice-activated

microphone for subject monitoring. Technicians are present 24 h per day to monitor

data acquisition, collect biologic specimens, perform tests, and record sleep episodes.
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All staff are trained to avoid communicating either the time of day or the nature of

the experimental conditions to the subjects. An extensive series of written protocols

and checklists is used to ensure uniformity in the execution of standard procedures

(e.g., at bedtime and waketime).

Baseline: During the baseline segments of recordings, subjects are on a ’normal

routine’ in which his/her bedtimes and wake-times are scheduled according to that

of the screening period including eight hours of sleep per 24-hour period and they are

restricted to light activity only. During the scheduled sleep times, the subjects are in

darkness (< 0.2 lux) while during the scheduled wake episodes normal room lighting

is used (150 lux). Three balanced meals are served during these normal routine days.

The subject are asked not to take daytime naps.

Forced desynchrony: In this experiment we use a 28-h regime. A schematic

representation of the disassociation of the sleep-wake schedule from the circadian

rhythm is illustrated in Fig. 10 Top. The Forced Desynchrony protocol begins on

the morning of Experimental Day 3 and continues for the next 7 days, ending on the

evening of Experimental Day 9. Upon waking on Experimental Day 3, the subjects’

sleep-wake cycle is scheduled to a period of 28 h. Bed rest / dark episodes are

9.33 h long and waking episodes are 18.67 h long. The subjects’ daily activities are

scheduled in this manner for six, 28-h ’days’. In this way the entire circadian cycle

have occurred across all sleep-wake cycles, and vice versa. During this segment of the

protocol, ambient light intensities during waking episodes are 3 lux (very dim room

light) and < 0.02 lux during bed rest episodes. All testing procedures and blood

sampling continues. Upon awakening from sleep on Experimental Day 10, subjects

are discharged from the laboratory.

Constant routine: This begins upon awakening after baseline (Fig. 10 Bottom).

The subjects spend 40 hours awake on a constant routine (missing one nights’ sleep).

S/he is asked to remain awake, sitting semi-recumbent on a bed (45◦ torso elevation),

in dim (< 15 lux) indoor light. The subjects’ diet during this segment consists of a
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measured portion of food and drink every 2 hours containing approximately 100 mEq

potassium and 150 mEq sodium per 24 hours, consisting of 25% fat, 25% protein and

50% carbohydrates. Fluid intake is constant at 3.5 L/day. Following the constant

routine subjects are scheduled for an 8-hour recovery sleep opportunity. After this

subjects are informed that the study is completed and that they may leave the

laboratory.

.6.3 Data Collection, Storage and Transfer

EKG: A two channel (RA-V6, RA-V5) bipolar EKG was recorded continuously

over the 12-day period at 512 Hz using the Vitaport recording system (TEMEC

Instruments, Kerkrade, Netherlands). The raw EKG signals are downloaded in

ASCII format and transferred via secure FTP to Physiobank (NIH/NCRR Grant

No. P41RR13622) data storage system. The EKG is then automatically scored

by Aristotle software (http://www.physionet.org/physiotools/ecgpuwave) where R-

wave times and beat morphologies are annotated. Each individual R-wave time is

assigned (1) a circadian phase (based on the CBT data), (2) time into study time, (3)

a sleep-wake state and (4) a time into sleep or wakefulness. The data are available

via a secure web or FTP link to the PI’s group for analysis.

Temperature recording and analysis of circadian phase: Analysis of CBT

rhythms from forced desynchrony protocols yields an accurate estimate of circadian

phase [160]. A real-time, on-line data acquisition system is used to continuously

record CBT every minute via a disposable rectal thermistor (Yellow Springs In-

strument Company, Yellow Springs, OH). The thermistor is inserted 10cm into the

rectum and remains there for the duration of the protocol. Using well-validated

mathematical techniques the phase (φ), period (τ) and amplitude (ω) of the CBT

rhythm can be established [160] (see also Appendix A). CBT is collected continuously

across the entire 12-day protocol at a sampling frequency of 1-minute per sample.
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This data is stored directly into an ASCII file residing on the Brigham and Women’s

Hospital, GCRC system.

Activity: Wrist activity levels are continuously measured in subjects for the 3-

weeks before admission to the laboratory and for the entire 12-day protocol (Actiwatch-

Light, Minimitter, OR, USA). Activity levels are quantified using digital integration

of epochs of 30-second duration.

Blood pressure: Beat-to-beat blood pressure are measured using the Porta-

press (TPD Biomedical Instrumentation, Amsterdam, Netherlands). This is a reli-

able, non-invasive device which accurately measures blood pressure. Measurements

are continuously recorded during sleep on each forced desynchrony sleep period and

throughout the entire constant routine study. Arterial blood pressure are measured

by means of a finger cuff (plethysmography) calibrated against an arm cuff. Blood

pressure calibrations are then maintained for finger height with an in-built hydro-

static monometer. Recordings are stored directly to computer hard drive and are

time synchronized with EKG and CBT measurements. Beat-to-beat blood pressure

data are collected throughout each sleep episode and during four, 2-hour intervals

each day.

Wake and sleep episodes: During scheduled wakefulness, subjects are free to

move about the suite as desired, except that they are not permitted to lie down or

nap. The subjects’ activity is monitored by wrist worn actigraphy and behavioral

activity is monitored. Sleep episodes are polysomnographically recorded. Subjects

are instructed not to get out of bed, even if they should awaken before the end of the

scheduled sleep episode. If requested, a technician will bring the subject a urinal or

bedpan during scheduled sleep time. During scheduled sleep time, the ambient light

intensity in the suite is less than 0.02 lux (complete darkness). Polysomnographic

EEG recording is performed using surface electrodes (Beckman Instrument Com-

pany, Schiller Park, IL) applied to specific locations on the subjects’ face and scalp

prior to bedtime for the recording of central (C3 and C4) and occipital (O1 and O2)
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electroencephalogram (EEG), electro-oculogram (EOG), and submental electromyo-

gram (EMG). EKG was also recorded using a standard chest lead.

For the entire in-laboratory phase of the studies all EEG, EOG, EMG, and EKG

channels are continuously monitored via at a sampling frequency of 512 Hz using a

Vitaport system (TEMEC, Netherlands), and the data are stored onto an 200 Mbyte

flash RAM card for downloading after wake time. All sleep recordings are scored vi-

sually in 30-second epochs according to the method of Rechtschaffen and Kales [161].

Sleep measures include latency to sleep onset, latency to REM sleep, wake after sleep

onset (WASO), minutes and percentage of each stage of sleep [Stages I, II, III, IV,

SWS (Stages III & IV combined) and REM], sleep efficiency, and amount of wake in

the last 2-h of the sleep episode. Inter-beat interval is assessed from the EKG using

standard validated software (http://www.physionet.org/physiotools/ecgpuwave).

All sleep recordings are scored visually in 30-second epochs according to the

method of Rechtschaffen and Kales. Sleep measures include latency to sleep onset,

latency to REM sleep, wake after sleep onset (WASO), minutes and percentage of

each stage of sleep [Stages 1, 2, 3, 4,], sleep efficiency, and amount of wake in the

sleep episode.

.7 Circadian Methods of Data Analysis

Each physiologic measurement is assigned a circadian phase (with minimum CBT

equal to 0 circadian degrees, which translates to ≈5AM), and data are aligned to

the CBT rhythm. Cosinor analysis [96, 162] is performed with the inclusion of a

linear term (for estimation of the effect of duration of wakefulness), a fundamental

cosine curve (at the period of the circadian clock 24.18-h) and a harmonic cosine

term (period = 12.9-h). Any linear effects of sleep deprivation (homeostatic sleep

drive) are removed by subtraction of the linear coefficients obtained from each the

individual’s cosinor analysis. Data are then normalized across subjects by expressing
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variables as a percent deviation from the mean, minimizing inter-subject variability

in absolute baseline levels. We then average across circadian “bins” of 60◦ within

each subject. Group cosinor analysis (no linear term), was then performed on this

normalized data. The results are double plotted for better visualization of underlying

circadian rhythms.
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