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Chapter 1

Effect of Trends on Detrended

Fluctuation Analysis

1.1 Overview

Detrended fluctuation analysis (DFA) is a scaling analysis method used to estimate long-

range power-law correlation exponents in noisy signals. Many noisy signals in real systems

display trends, so that the scaling results obtained from the DFA method become difficult

to analyze. We systematically study the effects of three types of trends — linear, periodic,

and power-law trends, and offer examples where these trends are likely to occur in real data.

We compare the difference between the scaling results for artificially generated correlated

noise and correlated noise with a trend, and study how trends lead to the appearance of

crossovers in the scaling behavior. We find that crossovers result from the competition

between the scaling of the noise and the “apparent” scaling of the trend. We study how

the characteristics of these crossovers depend on (i) the slope of the linear trend; (ii) the

amplitude and period of the periodic trend; (iii) the amplitude and power of the power-law

trend and (iv) the length as well as the correlation properties of the noise. Surprisingly, we

find that the crossovers in the scaling of noisy signals with trends also follow scaling laws —

i.e. long-range power-law dependence of the position of the crossover on the parameters of

the trends. We show that the DFA result of noise with a trend can be exactly determined by
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the superposition of the separate results of the DFA on the noise and on the trend, assuming

that the noise and the trend are not correlated. If this superposition rule is not followed,

this is an indication that the noise and the superimposed trend are not independent, so

that removing the trend could lead to changes in the correlation properties of the noise. In

addition, we show how to use DFA appropriately to minimize the effects of trends, and how

to recognize if a crossover indicates indeed a transition from one type to a different type

of underlying correlation, or the crossover is due to a trend without any transition in the

dynamical properties of the noise.

1.2 Introduction to this chapter

Many physical and biological systems exhibit complex behavior characterized by long-range

power-law correlations. Traditional approaches such as the power-spectrum and correlation

analysis are not suited to accurately quantify long-range correlations in non-stationary sig-

nals — e.g. signals exhibiting fluctuations along polynomial trends. Detrended fluctuation

analysis (DFA) [1–4] is a scaling analysis method providing a simple quantitative parameter

— the scaling exponent α — to represent the correlation properties of a signal. The advan-

tages of DFA over many methods are that it permits the detection of long-range correlations

embedded in seemingly non-stationary time series, and also avoids the spurious detection of

apparent long-range correlations that are artifact of non-stationarity. In the past few years,

more than 100 publications have utilized the DFA as method of correlation analysis, and

have uncovered long-range power-law correlations in many research fields such as cardiac

dynamics [5–23], bioinformatics [1, 2, 24–34], economics [35–47], meteorology [48–50], geol-

ogy [51], ethology [52] etc. Furthermore, the DFA method may help identify different states

of the same system according to its different scaling behaviors — e.g. the scaling exponent

α for heart inter-beat intervals is different for healthy and sick individuals [14, 16,17,53].

The correct interpretation of the scaling results obtained by the DFA method is crucial

for understanding the intrinsic dynamics of the systems under study. In fact, for all systems

where the DFA method was applied, there are many issues that remain unexplained. One of
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the common challenges is that the correlation exponent is not always a constant (indepen-

dent of scale) and crossovers often exist — i.e. change of the scaling exponent α for different

range of scales [5, 16, 35]. A crossover usually can arise from a change in the correlation

properties of the signal at different time or space scales, or can often arise from trends in the

data. In this paper, we systematically study how different types of trends affect the appar-

ent scaling behavior of long-range correlated signals. The existence of trends in times series

generated by physical or biological systems is so common that it is almost unavoidable. For

example, the number of particles emitted by a radiation source in an unit time has a trend

of decreasing because the source becomes weaker [54, 55]; the density of air due to gravity

has a trend at different altitude [56]; the air temperature in different geographic locations

and the water flow of rivers have a periodic trend due to seasonal changes [49, 50, 57–59];

the occurrence rate of earthquakes in certain area has trend in different time period [60].

An immediate problem facing researchers applying scaling analysis to time series is whether

trends in data arise from external conditions, having little to do with the intrinsic dynamics

of the system generating noisy fluctuating data. In this case, a possible approach is to

first recognize and filter out the trends before we attempt to quantify correlations in the

noise. Alternatively, trends may arise from the intrinsic dynamics of the system, rather

than being an epiphenomenon of external conditions, and thus may be correlated with the

noisy fluctuations generated by the system. In this case, careful considerations should be

given if trends should be filtered out when estimating correlations in the noise, since such

”intrinsic” trends may be related to the local properties of the noisy fluctuations.

Here we study the origin and the properties of crossovers in the scaling behavior of noisy

signals, by applying the DFA method first on correlated noise and then on noise with trends,

and comparing the difference in the scaling results. To this end, we generate artificial time

series — anticorrelated, white and correlated noise with standard deviation equal to one —

using the modified Fourier filtering method introduced by Makse et al. [61]. We consider

the case when the trend is independent of the local properties of the noise (external trend).

We find that the scaling behavior of noise with a trend is a superposition of the scaling of

6

the noise and the apparent scaling of the trend, and we derive analytical relations based on

the DFA, which we call “superposition rule”. We show how this “superposition rule” can

be used to determine if the trends are independent of the noisy fluctuation in real data, and

if filtering these trends out will no affect the scaling properties of the data.

The outline of this section is as follows. In Sec.1.3, we review the algorithm of the DFA

method, In Sec. 1.4, we consider the effect of a linear trend. In Sec. 1.5, we study a periodic

trend, and in Sec. 1.6 the effect of power-law trend. We systematically study all resulting

crossovers, their conditions of existence and their typical characteristics associated with the

different types of trends. Further, we discuss some general rules regarding the effect of

trends in Sec. 1.7. Finally, Sec. 1.8 contains a summary.

1.3 Detrended Fluctuation Analysis (DFA) Method

Using a modified Fourier filtering method [61], we can generate stationary uncorrelated,

correlated, and anti-correlated signals u(k) (k = 1, 2, 3, ..., Nmax) with a standard deviation

σ = 1. This method consists of the following steps:

(a) First, we generate an uncorrelated and Gaussian distributed sequence η(k) and

calculate the Fourier transform coefficients η(q).

(b) The desired signal u(k) must exhibit correlations, which are defined by the form of

the power spectrum

S(q) = 〈u(q)u(−q)〉 ∼ q−(1−γ), (1.1)

where u(q) are the Fourier transform coefficients of u(k) and γ is the correlation exponent.

Thus, we generate u(q) using the following transformation:

u(q) = [S(q)]1/2η(q), (1.2)

where S(q) is the desired power spectrum in Eq. (1.1).

(c) We calculate the inverse Fourier transform of u(q) to obtain u(k).

Next, we briefly introduce the DFA method, which involves the following steps [1]:
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Figure 1.1: Algorithm of DFA method.

(a) The correlated signal u(k). (b) The integrated signal: y(i) =
∑i

k=1[u(k) − 〈u〉]. The

vertical dotted lines indicate a box of size n = 100, the solid straight lines segments are the

estimated linear “trend” in each box by least-squares fit.

(i) Starting with a correlated signal u(k), where k = 1, .., Nmax and Nmax is the length

of the signal, we first integrate the signal u(k) and obtain y(i) ≡ ∑i
k=1[u(k) − 〈u〉], where

〈u〉 is the mean.

(ii) The integrated signal y(i) is divided into boxes of equal length n.

(iii) In each box of length n, we fit y(i), using a polynomial function of order ` which

represents the trend in that box. The y coordinate of the fit line in each box is denoted by

yn(i) (see Fig. 1.1, where linear fit is used). Since we use a polynomial fit of order `, we

denote the algorithm as DFA-`.

(iv) The integrated signal y(i) is detrended by subtracting the local trend yn(i) in each

box of length n.

(v) For a given box size n, the root mean-square (r.m.s.) fluctuation for this integrated

and detrended signal is calculated:

F (n) ≡

√

√

√

√

1

Nmax

Nmax
∑

i=1

[Y (i)]2, (1.3)
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where

Y (i) = y(i) − yn(i), (1.4)

is called detrended fluctuation function.

(vi) The above computation is repeated for a broad range of scales (box sizes n) to

provide a relationship between F (n) and the box size n.

A power-law relation between the average root-mean-square fluctuation function F (n)

and the box size n indicates the presence of scaling: F (n) ∼ nα. The fluctuations can

be characterized by a scaling exponent α, a self-similarity parameter which represents the

long-range power-law correlation properties of the signal. If α = 0.5, there is no correlation

and the signal is uncorrelated (white noise); if α < 0.5, the signal is anti-correlated; if

α > 0.5, the signal is correlated (We note that when 0 < γ < 1, α and γ have the following

relation: α = (2 − γ)/2).

1.4 Noise with linear trends

First we consider the simplest case: correlated noise with a linear trend. A linear trend

u(i) = ALi (1.5)

is characterized by only one variable — the slope of the trend, AL. For convenience, we

denote the r.m.s. fluctuation function for noise without trends by Fη(n), linear trends by

FL(n), and noise with a linear trend by FηL(n).

1.4.1 DFA-1 on noise with a linear trend

Using the algorithm of Makse [61], we generate correlated noise with standard deviation

one, with a given correlation property characterized by a given scaling exponent α. We

apply DFA-1 to quantify the correlation properties of the noise and find that only in certain

good fit region the r.m.s. fluctuation function Fη(n) can be approximated by a power-law

function [62].
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Fη(n) = b0n
α (1.6)

where b0 is a parameter independent of the scale n. We also derive analytically the r.m.s.

fluctuation function for linear trend only for DFA-1 and find that [62]

FL(n) = k0ALnαL (1.7)

where k0 is a constant independent of the length of trend Nmax, of the box size n and of

the slope of the trend AL. We obtain αL = 2.

AL=2
−16

AL=2
−12

AL=2
−8

Correlated noise with
linear trend: FηL(n)

nx

DFA−1

10
0

10
1

10
2

10
3

10
4

10
5

n

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

F
(n

)

Correlated noise : Fη(n)
linear trends: FL(n)

2

2

Figure 1.2: Crossover behavior of the r.m.s. fluctuation function for noise with superposed

linear trends.

The length of the noise (with correlation exponent α = 0.1) is Nmax = 217, and the slopes

of superposed linear trends are AL = 2−16, 2−12, 2−8. For comparison, we show Fη(n) for

the noise (thick solid line) and FL(n) for the linear trends (dot-dashed line) (Eq.(1.7)). The

results show that a crossover at a scale n× for FηL(n). For n < n×, the noise dominates

and FηL(n) ≈ Fη(n). For n > n×, the linear trend dominates and FηL(n) ≈ FL(n).

Next we apply the DFA-1 method to the superposition of a linear trend with correlated

noise and we compare the r.m.s. fluctuation function FηL(n) with Fη(n) [see Fig.1.2]. We

observe a crossover in FηL(n) at scale n = n×. For n < n×, the behavior of FηL(n) is

10

very close to the behavior of Fη(n), while for n > n×, the behavior of FηL(n) is very close

to the behavior of FL(n). A similar crossover behavior is also observed in the scaling of

the well-studied biased random walk [63, 64]. It is known that the crossover in the biased

random walk is due to the competition of the unbiased random walk and the bias [see Fig.5.3

of [64]]. We illustrate this observation in Fig. 1.3, where the detrended fluctuation functions

(Eq. (1.4)) of the correlated noise, Yη(i), and of the noise with a linear trend, YηL(i) are

shown. For the box size n < n× as shown in Fig. 1.3(a) and (b), YηL(i) ≈ Yη(i). For

n > n× as shown in Fig. 1.3(c) and (d), YηL(i) has distinguishable quadratic background

significantly different from Yη(i). This quadratic background is due to the integration of the

linear trend within the DFA procedure and represents the detrended fluctuation function

YL of the linear trend. These relations between the detrended fluctuation functions Y (i) at

different time scales n explain the crossover in the scaling behavior of FηL(n): from very

close to Fη(n) to very close to FL(n) (observed in Fig.1.2).

The experimental results presented in Figs.1.2 and 1.3 suggest that the r.m.s. fluctuation

function for a signal which is a superposition of a correlated noise and a linear trend can

be expressed as:

[FηL(n)]2 = [FL(n)]2 + [Fη(n)]2 (1.8)

We provide an analytic derivation of this relation in 1.7.1, where we show that Eq.(1.8) holds

for the superposition of any two independent signals — in this particular case noise and a

linear trend. We call this relation the “superposition rule”. This rule helps us understand

how the competition between the contribution of the noise and the trend to the r.m.s.

fluctuation function FηL(n) at different scales n leads to appearance of crossovers [63].

Next, we ask how the crossover scale n× depends on: (i) the slope of the linear trend AL,

(ii) the scaling exponent α of the noise, and (iii) the length of the signal Nmax. Surprisingly,

we find that for noise with any given correlation exponent α the crossover scale n× itself

follows a power-law scaling relation over several decades: n× ∼ (AL)θ (see Fig. 1.4). We

find that in this scaling relation, the crossover exponent θ is negative and its value depends

on the correlation exponent α of the noise — the magnitude of θ decreases when α increases.
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Figure 1.3: Comparison of the detrended fluctuation function for noise Yη(i) and for noise

with linear trend YηL(i) at different scales.

(a) and (c) are Yη for noise with α = 0.1; (b) and (d) are YηL for the same noise with a

linear trend with slope AL = 2−12 (the crossover scale n× = 320 see Fig. 1.2). (a) (b) for

scales n < n× the effect of the trend is not pronounced and Yη ≈ YηL (i.e. Yη � YL); (c)(d)

for scales n > n×, the linear trend is dominant and Yη � YηL.

We present the values of the “crossover exponent” θ for different correlation exponents α

in Table 1.1.

To understand how the crossover scale depends on the correlation exponent α of the

noise we employ the superposition rule [Eq.(1.8)] and estimate n× as the intercept between

Fη(n) and FL(n). From the Eqs. (1.6) and (1.7), we obtain the following dependence of n×

on α:

n× =

(

AL
k0

b0

)1/(α−αL)

=

(

AL
k0

b0

)1/(α−2)

(1.9)

This analytical calculation for the crossover exponent −1/(αL − α) is in a good agreement
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Figure 1.4: The crossover n× of FηL(n) for different noises with a linear trend.

We determine the crossover scale n× based on the difference ∆ between log Fη (noise) and

log FηL (noise with a linear trend). The scale for which ∆ = 0.05 is the estimated crossover

scale n×. For any given correlation exponent α of the noise, the crossover scale n× exhibits

a long-range power-law behavior n× ∼ (AL)θ, where the crossover exponent θ is a function

of α [see Eq.(1.9) and Table 1.1].

with the observed values of θ obtained from our simulations [see Fig.1.4 and Table 1.1].

Finally, since the FL(n) does not depend on Nmax as we show in Eq.(1.7), we find that

n× does not depend on Nmax. This is a special case for linear trends and does not always

hold for higher order polynomial trends.

1.4.2 DFA-2 on noise with a linear trend

Application of the DFA-2 method to noisy signals without any polynomial trends leads to

scaling results identical to the scaling obtained from the DFA-1 method, with the exception

of some vertical shift to lower values for the r.m.s. fluctuation function Fη(n) [see [62]].

However, for signals which are a superposition of correlated noise and a linear trend, in

contrast to the DFA-1 results presented in Fig. 1.2, FηL(n) obtained from DFA exhibits

no crossovers, and is exactly equal to the r.m.s. fluctuation function Fη(n) obtained from
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Table 1.1: The crossover exponent θ from the power-law relation between the crossover

scale n× and the slope of the linear trend AL — n× ∼ (AL)θ — for different values of the

correlation exponents α of the noise.

α θ −1/(2 − α)

0.1 -0.54 -0.53

0.3 -0.58 -0.59

0.5 -0.65 -0.67

0.7 -0.74 -0.77

0.9 -0.89 -0.91
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Figure 1.5: Comparison of the r.m.s. fluctuation function Fη(n) for noise with different

types of correlations (lines) and FηL(n) for the same noise with a linear trend (symbols) for

DFA-2.

The slope of the linear trend is AL = 2−12. FηL(n) = Fη(n) because the integrated linear

trend can be perfectly filtered out in DFA-2, thus YL(i) = 0.

DFA-2 for correlated noise without trend (see Fig. 1.5). These results indicate that a linear

trend has no effect on the scaling obtained from DFA-2. The reason for this is that by

design the DFA-2 method filters out linear trends, i.e. YL(i) = 0 (Eq.( 1.4)) and thus

FηL(n) = Fη(n) due to the superposition rule (Eq. (1.8)). For the same reason, polynomial
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trends of order lower than ` superimposed on correlated noise will have no effect on the

scaling properties of the noise when DFA-` is applied. Therefore, our results confirm that the

DFA method is a reliable tool to accurately quantify correlations in noisy signals embedded

in polynomial trends. Moreover, the reported scaling and crossover features of F (n) can be

used to determine the order of polynomial trends present in the data.

1.5 Sinusoidal trend

In this section, we study the effect of sinusoidal trends on the scaling properties of noisy

signals. For a signal which is a superposition of correlated noise and sinusoidal trend, we

find that based on the superposition rule (see 1.7.1) the DFA r.m.s. fluctuation function

can be expressed as

[FηS(n)]2 = [Fη(n)]2 + [FS(n)]2 , (1.10)

where FηS(n) is the r.m.s. fluctuation function of noise with a sinusoidal trend, and FS(n)

is for the sinusoidal trend. First we consider the application of DFA-1 to a sinusoidal

trend. Next we study the scaling behavior and the features of crossovers in FηS(n) for

the superposition of correlated noise and sinusoidal trend employing the superposition rule

[Eq.(1.10)]. At the end of this section, we discuss the results obtained from higher order

DFA.

1.5.1 DFA-1 on sinusoidal trend

Given a sinusoidal trend u(i) = AS sin (2πi/T ) (i = 1, ..., Nmax), where AS is the amplitude

of the signal and T is the period, we find that the r.m.s. fluctuation function FS(n) does not

depend on the length of the signal Nmax, and has the same shape for different amplitudes

and different periods [Fig. 1.6]. We find a crossover at scale corresponding to the period of

the sinusoidal trend

n2× ≈ T, (1.11)
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and does not depend on the amplitude AS. We call this crossover n2× for convenience, as

we will see later. For n < n2×, the r.m.s. fluctuation FS(n) exhibits an apparent scaling

with the same exponent as FL(n) for the linear trend [see Eq. (1.7)]:

FS(n) = k1
AS

T
nαS (1.12)

where k1 is a constant independent of the length Nmax, of the period T and the amplitude

AS of the sinusoidal signal, and of the box size n. As for the linear trend [Eq.(1.7)], we

obtain αS = 2 because at small scales (box size n) the sinusoidal function is dominated

by a linear term. For n > n2×, due to the periodic property of the sinusoidal trend, FS(n)

is a constant independent of the scale n:

FS(n) =
1

2
√

2π
AS · T. (1.13)

The period T and the amplitude AS also affects the vertical shift of FS(n) in both regions.

We note that in Eqs.(1.12) and (1.13), FS(n) is proportional to the amplitude AS, a behavior

which is also observed for the linear trend [Eq. (1.7)].

1.5.2 DFA-1 on noise with sinusoidal trend

In this section, we study how the sinusoidal trend affects the scaling behavior of noise

with different type of correlations. We apply the DFA-1 method to a signal which is a

superposition of correlated noise with a sinusoidal trend. We observe that there are typically

three crossovers in the r.m.s. fluctuation FηS(n) at characteristic scales denoted by n1×,

n2× and n3× [Fig. 1.7]. These three crossovers divide FηS(n) into four regions, as shown in

Fig. 1.7(a) (the third crossover cannot be seen in Fig. 1.7(b) because its scale n3× is greater

than the length of the signal). We find that the first and third crossovers at scales n1× and

n3× respectively [see Fig. 1.7] result from the competition between the effects on FηS(n) of

the sinusoidal signal and the correlated noise. For n < n1× (region I) and n > n3× (region

IV), we find that the noise has the dominating effect (Fη(n) > FS(n)), so the behavior of

FηS(n) is very close to the behavior of Fη(n) [Eq. (1.10)]. For n1× < n < n2× (region II)
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Figure 1.6: R.m.s. fluctuation function FS(n) for sinusoidal functions of length Nmax = 217

with different amplitude AS and period T .

All curves exhibit a crossover at n2× ≈ T/2, with a slope αS = 2 for n < n2×, and a flat

region for n > n2×. There are some spurious singularities at n = j T
2 (j is a positive integer)

shown by the spikes.

and n2× < n < n3× (region III) the sinusoidal trend dominates (FS(n) > Fη(n)), thus the

behavior of FηS(n) is close to FS(n) [see Fig. 1.7 and Fig. 1.8].

To better understand why there are different regions in the behavior of FηS(n), we con-

sider the detrended fluctuation function [Eq. (1.4)] of the correlated noise Yη(i), and of the

noise with sinusoidal trend YηS. In Fig. 1.8 we compare Yη(i) and YηS(i) for anticorrelated

and correlated noise in the four different regions. For very small scales n < n1×, the effect

of the sinusoidal trend is not pronounced, YηS(i) ≈ Yη(i), indicating that in this scale region

the signal can be considered as noise fluctuating around a constant trend which is filtered

out by the DFA-1 procedure [Fig. 1.8(a)(b)]. Note, that the behavior of YηS [Fig. 1.8(b)]

is identical to the behavior of YηL [Fig. 1.3(b)], since both a sinusoidal with a large period

T and a linear trend with small slope AL can be well approximated by a constant trend

for n < n1×. For small scales n1× < n < n2× (region II), we find that there is a dominant

quadratic background for YηS(i) [Fig. 1.8(d)]. This quadratic background is due to the

integration procedure in DFA-1, and is represented by the detrended fluctuation function
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Figure 1.7: Crossover behavior of the root mean square fluctuation function FηS(n) (cir-

cles) for correlated noise (of length Nmax = 217) with a superposed sinusoidal function

characterized by period T = 128 and amplitude AS = 2.

The r.m.s. fluctuation function Fη(n) for noise (thick line) and FS(n) for the sinusoidal

trend (thin line) are shown for comparison. (a) FηS(n) for correlated noise with α = 0.9.

(b) FηS(n) for anticorrelated noise with α = 0.9. There are three crossovers in FηS(n), at

scales n1×, n2× and n3× (the third crossover can not be seen in (b) because it occurs at

scale larger than the length of the signal). For n < n1× and n > n3×, the noise dominates

and FηS(n) ≈ Fη(n) while for n1× < n < n3×, the sinusoidal trend dominates and FηS(n) ≈
FS(n). The crossovers at n1× and n3× are due to the competition between the correlated

noise and the sinusoidal trend [see Fig. 1.8], while the crossover at n2× relates only to the

period T of the sinusoidal [Eq. (1.11)].

of the sinusoidal trend YS(i). It is similar to the quadratic background observed for linear

trend YηL(i) [Fig. 1.3(d)] — i.e. for n1× < n < n2× the sinusoidal trend behaves as a linear

trend and YS(i) ≈ YL(i). Thus in region II the “linear trend” effect of the sinusoidal is

dominant, YS > Yη, which leads to FηS(n) ≈ FS(n). This explains also why FηS(n) for

n < n2× (Fig. 1.7) exhibits crossover behavior similar to the one of FηL(n) observed for

noise with a linear trend. For n2× < n < n3× (region III) the sinusoidal behavior is strongly

pronounced [Fig. 1.8(f)], YS(i) � Yη(i), and YηS(i) ≈ YS(i) changes periodically with period

equal to the period of the sinusoidal trend T . Since YηS(i) is bounded between a minimum
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Figure 1.8: Comparison of the detrended fluctuation function for noise, Yη(i) and noise with

sinusoidal trend, YηS(i) in four regions.

The same signals as in Fig. 1.7 are used. Panels (a)-(f) correspond to Fig. 1.7(b) for

anticorrelated noise with exponent α = 0.1, and panels (g)-(h) correspond to the Fig. 1.7(a)

for correlated noise with exponent α = 0.9. (a)-(b) For all scales n < n1×, (c)(d) For

n2× > n > n1×, (e)(f) For n2× < n < n3× (i.e. n � T/2), (g)(h) for n > n3×.

and a maximum value, FηS(n) cannot increase and exhibits a flat region (Fig. 1.7). At very

large scales, n > n3×, the noise effect is again dominant (YS(i) remains bounded, while Yη

grows when increasing the scale) which leads to FηS(n) ≈ Fη(n), and a scaling behavior

corresponding to the scaling of the correlated noise.

First, we consider n1×. Surprisingly, we find that for noise with any given correlation

exponent α the crossover scale n1× exhibits long-range power-law dependence of the period

T — n1× ∼ T θT1 , and the amplitude AS — n1× ∼ (AS)
θA1 of the sinusoidal trend [see

Fig. 1.9(a) and (b)]. We find that the ”crossover exponents” θT1 and θA1 have the same
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Figure 1.9: Dependence of the three crossovers in FηS(n) for noise with a sinusoidal trend

on the period T , and amplitude AS of the sinusoidal trend.

(a) Power-law relation between the first crossover scale n1× and the period T for fixed

amplitude AS and varying correlation exponent α, (b) Power-law relation between the first

crossover n1× and the amplitude of the sinusoidal trend AS for fixed period T and varying

correlation exponent α, (c) The second crossover scale n2×, (d) Power-law relation between

the third crossover n3× and T for fixed amplitude AS and varying α trend, (e) Power-law

relation between the third crossover n3× and AS for fixed T and varying α.

magnitude but different sign — θT1 is positive while θA1 is negative. We also find that

the magnitude of θT1 and θA1 increases for the larger values of the correlation exponents α

of the noise. We present the values of θT1 and θA1 for different correlation exponent α in

Table 1.2. To understand these power-law relations between n1× and T , and between n1×

and AS, and also how the crossover scale n1× depends on the correlation exponent α we

employ the superposition rule [Eq. 1.10] and estimate n1× analytically as the first intercept

nth
1× of Fη(n) and FS(n). From Eqs. (1.12) and (1.6), we obtain the following dependence

of n1× on T , AS and α:

n1× =

(

b0

k1

T

AS

)1/(2−α)

(1.14)
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From this analytical calculation we obtain the following relation between the two crossover

exponents θT1 and θA1 and the correlation exponent α: θT1 = − θA1 = 1/(2 − α), which

is in a good agreement with the observed values of θT1, θA1 obtained from simulations [see

Fig. 1.9(a) (b) and Table 1.2].

Next, we consider n2×. Our analysis of the r.m.s. fluctuation function FS(n) for the

sinusoidal signal in Fig. 1.6 suggests that the crossover scale FS(n) does not depend on the

amplitude AS of the sinusoidal. The behavior of the r.m.s. fluctuation function FηS(n) for

noise with superimposed sinusoidal trend in Fig. 1.7(a) and (b) indicates that n2× does

not depend on the correlation exponent α of the noise, since for both correlated (α = 0.9)

and anticorrelated (α = 0) noise (T and AS are fixed), the crossover scale n2× remains

unchanged. We find that n2× depends only on the period T of the sinusoidal trend and

exhibits a long-range power-law behavior n2× ∼ T θT2 with a crossover exponent θT2 ≈ 1

(Fig. 1.9(c)) which is in agreement with the prediction of Eq.(1.11).

For the third crossover scale n3×, as for n1× we find a power-law dependence on the pe-

riod T , n3× ∼ T θT3 , and amplitude AS, n3× ∼ (AS)
θA3 ,of the sinusoidal trend [see Fig. 1.9(d)

and (e)]. However, in contrast to the n1× case, we find that the crossover exponents θTp3

and θA3 are equal and positive with decreasing values for increasing correlation exponents

α. In Table 1.3, we present the values of these two exponents for different correlation expo-

nent α. To understand how the scale n3× depends on T , AS and the correlation exponent

α simultaneously, we again employ the superposition rule [Eq. (1.10)] and estimate n3× as

the second intercept nth
3× of Fη(n) and FS(n). From Eqs. (1.13) and (1.6), we obtain the

following dependence:

n3× =

(

1

2
√

2πb0

AST

)1/α

. (1.15)

From this analytical calculation we obtain θT3 = θA3 = 1/α which is in good agreement

with the values of θT3 and θA3 observed from simulations [Table 1.3].

Finally, our simulations show that all three crossover scales n1×, n2× and n3× do not

depend on the length of the signal Nmax, since Fη(n) and FS(n) do not depend on Nmax as

shown in Eqs. (1.6), (1.10), (1.12), and (1.13).
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Table 1.2: The crossover exponents θT1 and θA1 characterizing the power-law dependence

of n1× on the period T and amplitude AS obtained from simulations: n1× ∼ T θT1 and

n1× ∼ (AS)
θA1 for different value of the correlation exponent α of noise.

α θT1 -θA1 1/(2 − α)

0.1 0.55 0.54 0.53

0.3 0.58 0.59 0.59

0.5 0.66 0.66 0.67

0.7 0.74 0.75 0.77

0.9 0.87 0.90 0.91

Table 1.3: The crossover exponents θT3 and θA3 for the power-law relations: n3× ∼ T θT3

and n3× ∼ (AS)
θA3 for different value of the correlation exponent α of noise.

α θT3 θA3 1/α

0.4 2.29 2.38 2.50

0.5 1.92 1.95 2.00

0.6 1.69 1.71 1.67

0.7 1.39 1.43 1.43

0.8 1.26 1.27 1.25

0.9 1.06 1.10 1.11

1.5.3 Higher order DFA on pure sinusoidal trend

In the previous Sec. 1.5.2, we discussed how sinusoidal trends affect the scaling behavior of

correlated noise when the DFA-1 method is applied. Since DFA-1 removes only constant

trends in data, it is natural to ask how the observed scaling results will change when we

apply DFA of order ` designed to remove polynomial trends of order lower than `. In this

section, we first consider the r.m.s. fluctuation FS for a sinusoidal signal and then we study

the scaling and crossover properties of FηS for correlated noise with superimposed sinusoidal

signal when higher order DFA is used.

We find that the r.m.s. fluctuation function FS does not depend on the length of the

signal Nmax, and preserves a similar shape when different order-` DFA method is used
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Figure 1.10: Comparison of the results of different order DFA on a sinusoidal trend.

The sinusoidal trend is given by the function 64 sin(2πi/211) and the length of the signal is

Nmax = 217. The spurious singularities (spikes) arise from the discrete data we use for the

sinusoidal function.

[Fig. 1.10]. In particular, FS exhibits a crossover at a scale n2× proportional to the period

T of the sinusoidal: n2× ∼ T θT2 with θT2 ≈ 1. The crossover scale shifts to larger values

for higher order ` [Fig. 1.6 and Fig. 1.10]. For the scale n < n2×, FS exhibits an apparent

scaling: FS ∼ nαS with an effective exponent αS = ` + 1 . For DFA-1, we have ` = 1 and

recover αS = 2 as shown in Eq. (1.12). For n > n2×, FS(n) is a constant independent of

the scale n, and of the order ` of the DFA method in agreement with Eq. (1.13).

Next, we consider FηS(n) when DFA-` with a higher order ` is used. We find that for

all orders `, FηS(n) does not depend on the length of the signal Nmax and exhibits three

crossovers — at small, intermediate and large scales — similar behavior is reported for

DFA-1 in Fig. 1.7. Since the crossover at small scales, n1×, and the crossover at large scale,

n3×, result from the “competition” between the scaling of the correlated noise and the effect

of the sinusoidal trend (Figs. 1.7 and 1.8), using the superposition rule [Eq. (1.10)] we can

estimate n1× and n3× as the intercepts of Fη(n) and FS(n) for the general case of DFA-`.

For n1× we find the following dependence on the period T , amplitude AS, the correlation
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exponent α of the noise, and the order ` of the DFA-` method:

n1× ∼ (T/AS)
1/(`+1−α) (1.16)

For DFA-1, we have ` = 1 and we recover Eq. (1.14). In addition, n1× is shifted to larger

scales when higher order DFA-` is applied, due to the fact that the value of FS(n) decreases

when ` increases (αS = ` + 1, see Fig. 1.10).

For the third crossover observed in FηS(n) at large scale n3× we find for all orders ` of

the DFA-` the following scaling relation:

n3× ∼ (TAS)
1/α. (1.17)

Since the scaling function Fη(n) for correlated noise shifts vertically to lower values when

higher order DFA-` is used, n3× exhibits a slight shift to larger scales.

For the crossover n2× in FηS(n) at FηS(n) at intermediate scales, we find: n2× ∼ T .

This relation is independent of the order ` of the DFA and is identical to the relation found

for FS(n) [Eq. (1.11)]. n2× also exhibits a shift to larger scales when higher order DFA is

used [see Fig. 1.10].

The reported here features of the crossovers in FηS(n) can be used to identify low-

frequency sinusoidal trends in noisy data, and to recognize their effects on the scaling prop-

erties of the data. This information may be useful when quantifying correlation properties

in data by means of scaling analysis.

1.6 Power-law trend

In this section we study the effect of power-law trends on the scaling properties of noisy

signals. We consider the case of correlated noise with superposed power-law trend u(i) =

APiλ, when AP is a positive constant, i = 1, ..., Nmax, and Nmax is the length of the signal.

We find that when the DFA-1 method is used, the r.m.s. fluctuation function FηP(n) exhibits

a crossover between two scaling regions [Fig. 1.11]. This behavior results from the fact that

at different scales n, either the correlated noise or the power-law trend is dominant, and
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Figure 1.11: Crossover behavior of the r.m.s. fluctuation function FηP(n) (circles) for

correlated noise (of length Nmax = 217) with a superimposed power-law trend u(i) = APiλ.

The r.m.s. fluctuation function Fη(n) for noise (solid line) and the r.m.s. fluctuation func-

tion FP(n) (dash line) are also shown for comparison. (a) FηP(n) for noise with correlation

exponent αλ = 0.9, and power-law trend with amplitude AP = 1000/(Nmax)0.4 and posi-

tive power λ = 0.4; (b) FηP(n) for Brownian noise (integrated white noise, αλ = 1.5), and

power-law trend with amplitude AP = 0.01/ (Nmax)−0.7 and negative power λ = −0.7.

can be predicted by employing the superposition rule:

[FηP(n)]2 = [Fη(n)]2 + [FP(n)]2 , (1.18)

where Fη(n) and FP(n) are the r.m.s. fluctuation function of noise and the power-law

trend respectively, and FηP(n) is the r.m.s. fluctuation function for the superposition of

the noise and the power-law trend. Since the behavior of Fη(n) is known (Eq. (1.6) and

Sec. 1.7.1), we can understand the features of FηP(n), if we know how FP(n) depends on the

characteristics of the power-law trend. We note that the scaling behavior of FηP(n) displayed

in Fig. 1.11(a) is to some extent similar to the behavior of the r.m.s. fluctuation function

FηL(n) for correlated noise with a linear trend [Fig. 1.2] — e.g. the noise is dominant at

small scales n, while the trend is dominant at large scales. However, the behavior FP(n) is

more complex than that of FL(n) for the linear trend, since the effective exponent αλ for

FP(n) can depend on the power λ of the power-law trend. In particular, for negative values
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of λ, FP(n) can become dominated at small scales (Fig. 1.11(b)) while Fη(n) dominates

at large scales — a situation completely opposite of noise with linear trend (Fig. 1.2) or

with power-law trend with positive values for the power λ. Moreover, FP(n) can exhibit

crossover behavior at small scales [Fig. 1.11(b)] for negative λ which is not observed for

positive λ. In addition FP(n) depends on the order ` of the DFA method and the length

Nmax of the signal. We discuss the scaling features of the power-law trends in the following

three subsections.

1.6.1 Dependence of FP(n) on the power λ

First we study how the r.m.s. fluctuation function FP(n) for a power-law trend u(i) = APiλ

depends on the power λ. We find that

FP(n) ∼ APnαλ , (1.19)

where αλ is the effective exponent for the power-law trend. For positive λ we observe no

crossovers in FP(n) (Fig. 1.11(a)). However, for negative λ there is a crossover in FP(n) at

small scales n (Fig. 1.11(b)), and we find that this crossover becomes even more pronounced

with decreasing λ or increasing the order ` of the DFA method, and is also shifted to larger

scales [Fig. 1.12(a)].

Next, we study how the effective exponent αλ for FP(n) depends on the value of the

power λ for the power-law trend. We examine the scaling of FP(n) and estimate αλ for

−4 < λ < 4. In the cases when FP(n) exhibits a crossover, in order to obtain αλ we fit the

range of larger scales to the right of the crossover. We find that for any order ` of the DFA-`

method there are three regions with different relations between αλ and λ [Fig. 1.12(b)]:

(i) αλ ≈ ` + 1 for λ > ` − 0.5 (region I);

(ii) αλ ≈ λ + 1.5 for −1.5 ≤ λ ≤ ` − 0.5 (region II);

(iii) αλ ≈ 0 for λ < −1.5 (region III).
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Figure 1.12: Scaling behavior of r.m.s. fluctuation function FP(n) for power-law trends,

u(i) ∼ iλ, where i = 1, ..., Nmax and Nmax = 217 is the length of the signal.

(a) For λ < 0, FP(n) exhibits crossover at small scales which is more pronounced with

increasing the order ` of DFA-` and decreasing the value of λ. (b) Dependence of the

effective exponent αλ on the power λ for different order ` = 1, 2, 3 of the DFA method. (c)

Asymptotic behavior near integer values of λ. FP(n) is plotted for λ → 1 when DFA-2 is

used.

Note, that for integer values of the power λ (λ = 0, 1, ..., m − 1), i.e. polynomial trends of

order m−1, the DFA-` method of order ` > m−1 (` is also an integer) leads to FP(n) ≈ 0,

since DFA-` is designed to remove polynomial trends. Thus for a integer values of the

power λ there is no scaling and the effective exponent αλ is not defined if a DFA-` method

of order ` > λ is used [Fig. 1.12]. However, it is of interest to examine the asymptotic

behavior of the scaling of FP(n) when the value of the power λ is close to an integer. In

particular , we consider how the scaling of FP(n) obtained from DFA-2 method changes

when λ → 1 [Fig. 1.12(c)]. Surprisingly, we find that even though the values of FP(n)

are very small at large scales, there is a scaling for FP(n) with a smooth convergence of

the effective exponent αλ → 2.5 when λ → 1, according to the dependence αλ ≈ λ + 1.5

established for region II [Fig. 1.12(b)]. At smaller scales there is a flat region which is due

to the fact that the fluctuation function Y (i) (Eq. (1.4)) is smaller than the precision of the

numerical simulation.
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1.6.2 Dependence of FP(n) on the order ` of DFA

Another factor that affects the r.m.s. fluctuation function of the power-law trend FP(n), is

the order ` of the DFA method used. We first take into account that:

(1) for integer values of the power λ, the power-law trend u(i) = APiλ is a polynomial

trend which can be perfectly filtered out by the DFA method of order ` > λ, and as

discussed in Sec. 1.4.2 and Sec. 1.6.1 [see Fig. 1.12(b) and (c)], there is no scaling for

FP(n). Therefore, in this section we consider only non-integer values of λ.

(2) for a given value of the power λ, the effective exponent αλ can take different values

depending on the order ` of the DFA method we use [see Fig. 1.12] — e.g. for fixed

λ > ` − 0.5, αλ ≈ ` + 1. Therefore, in this section, we consider only the case when

λ < ` − 0.5 (Region II and III).

Since higher order DFA-` provides a better fit for the data, the fluctuation function

Y (i) (Eq. (1.4)) decreases with increasing order `. This leads to a vertical shift to smaller

values of the r.m.s. fluctuation function F (n) (Eq. (1.3)). Such a vertical shift is observed

for the r.m.s. fluctuation function Fη(n) for correlated noise (see [62]), as well as for the

r.m.s. fluctuation function of power-law trend FP(n). Here we ask how this vertical shift in

Fη(n) and FP(n) depends on the order ` of the DFA method, and if this shift has different

properties for Fη(n) compared to FP(n). This information can help identify power-law

trends in noisy data, and can be used to differentiate crossovers separating scaling regions

with different types of correlations, and crossovers which are due to effects of power-law

trends.

We consider correlated noise with a superposed power-law trend, where the crossover

in FηP(n) at large scales n results from the dominant effect of the power-law trend —

FηP(n) ≈ FP(n) (Eq. (1.18) and Fig. 1.11(a)). We choose the power λ < 0.5, a range where

for all orders ` of the DFA method the effective exponent αλ of FP(n) remains the same

— i.e. αλ = λ + 1.5 (region II in Fig. 1.12(b)). For a superposition of an anticorrelated

noise and power-law trend with λ = 0.4, we observe a crossover in the scaling behavior of
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Figure 1.13: Effect of higher order DFA-` on the r.m.s. fluctuation function FηP(n) for

correlated noise with superimposed power-law trend.

(a) FηP(n) for anticorrelated noise with correlation exponent α = 0.1 and a power-law

u(i) = APiλ, where AP = 25/ (Nmax)0.4, Nmax = 217 and λ = 0.4. Results for different

order ` = 1, 2, 3 of the DFA method show (i) a clear crossover from a region at small scales

where the noise dominates FηP(n) ≈ Fη(n), to a region at larger scales where the power-law

trend dominates FηP(n) ≈ FP(n), and (ii) a vertical shift ∆ in FηP with increasing `. (b)

Dependence of the vertical shift ∆ in the r.m.s. fluctuation function FP(n) for power-law

trend on the order ` of DFA-` for different values of λ: ∆ ∼ `τ(λ). We define the vertical

shift ∆ as the y-intercept of FP(n): ∆ ≡ FP(n = 1). (c) Dependence of τ on the power λ

(error bars indicate the regression error for the fits of ∆(l) in (b)). (d) Comparison of τ(αλ)

for FP(n) and τ(α) for Fη(n).

FηP(n), from a scaling region characterized by the correlation exponent α = 0.1 of the noise,

where FηP(n) ≈ Fη(n), to a region characterized by an effective exponent αλ = 1.9, where
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FηP(n) ≈ FP(n), for all orders ` = 1, 2, 3 of the DFA-` method [Fig. 1.13(a)]. We also find

that the crossover of FηP(n) shifts to larger scales when the order ` of DFA-` increases, and

that there is a vertical shift of FηP(n) to lower values. This vertical shift in FηP(n) at large

scales, where FηP(n) = FP(n), appears to be different in magnitude when different order `

of the DFA-` method is used [Fig. 1.13(a)]. We also observe a less pronounced vertical shift

at small scales where FηP(n) ≈ Fη(n).

Next, we ask how these vertical shifts depend on the order ` of DFA-`. We define the

vertical shift ∆ as the y-intercept of FP(n): ∆ ≡ FP(n = 1). We find that the vertical shift

∆ in FP(n) for power-law trend follows a power law: ∆ ∼ `τ(λ). We tested this relation

for orders up to ` = 10, and we find that it holds for different values of the power λ of the

power-law trend [Fig. 1.13(b)]. Using Eq. (1.19) we can write: FP(n)/FP(n = 1) = nαλ , i.e.

FP(n) ∼ FP(n = 1). Since FP(n = 1) ≡ ∆ ∼ `τ(λ) [Fig. 1.13(b)], we find that:

FP(n) ∼ `τ(λ). (1.20)

We also find that the exponent τ is negative and is a decreasing function of the power λ

[Fig. 1.13(c)]. Because the effective exponent αλ which characterizes FP(n) depends on

the power λ [see Fig. 1.12(b)], we can express the exponent τ as a function of αλ as we

show in Fig. 1.13(d). This representation can help us compare the behavior of the vertical

shift ∆ in FP(n) with the shift in Fη(n). For correlated noise with different correlation

exponent α, we observe a similar power-law relation between the vertical shift in Fη(n) and

the order ` of DFA-`: ∆ ∼ `τ(α), where τ is also a negative exponent which decreases with

α. In Fig. 1.13(d) we compare τ(αλ) for FP(n) with τ(α) for Fη(n), and find that for any

αλ = α, τ(αλ) < τ(α). This difference between the vertical shift for correlated noise and

for a power-law trend can be utilized to recognize effects of power-law trends on the scaling

properties of data.

1.6.3 Dependence of FP(n) on the signal length Nmax

Here, we study how the r.m.s. fluctuation function FP(n) depends on the length Nmax of

the power-law signal u(i) = APiλ (i = 1, ..., Nmax). We find that there is a vertical shift
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in FP(n) with increasing Nmax [Fig. 1.14(a)]. We observe that when doubling the length

Nmax of the signal the vertical shift in FP(n), which we define as F 2Nmax

P /FNmax

P , remains

the same, independent of the value of Nmax. This suggests a power-law dependence of

FP(n) on the length of the signal:

FP(n) ∼ (Nmax)γ , (1.21)

where γ is an effective scaling exponent.

Next, we ask if the vertical shift depends on the power λ of the power-law trend. When

doubling the length Nmax of the signal, we find that for λ < `− 0.5, where ` is the order of

the DFA method, the vertical shift is a constant independent of λ [Fig. 1.14(b)]. Since the

value of the vertical shift when doubling the length Nmax is 2γ (from Eq. (1.21)), the results

in Fig. 1.14(b) show that γ is independent of λ when λ < `−0.5, and that − log 2γ ≈ −0.15,

i.e. the effective exponent γ ≈ −0.5.

For λ > ` − 0.5, when doubling the length Nmax of the signal, we find that the vertical

shift 2γ exhibits the following dependence on λ: − log10 2γ = log10 2λ−`, and thus the

effective exponent γ depends on λ — γ = λ− `. For positive integer values of λ (λ = `), we

find that γ = 0, and there is no shift in FP(n), suggesting that FP(n) does not depend on

the length Nmax of the signal, when DFA of order ` is used [Fig. 1.14]. Finally, we note that

depending on the effective exponent γ, i.e. on the order ` of the DFA method and the value

of the power λ, the vertical shift in the r.m.s. fluctuation function FP(n) for power-law

trend can be positive (λ > `), negative (λ < `), or zero (λ = `).

1.6.4 Combined effect on FP(n) of λ, ` and Nmax

We have seen that, taking into account the effects of the power λ (Eq. (1.19)), the order `

of DFA-` (Eq. (1.20)) and the effect of the length of the signal Nmax (Eq. (1.21)), we reach

the following expression for the r.m.s. fluctuation function FP(n) for a power-law trend

u(i) = APiλ:
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Figure 1.14: Dependence of the r.m.s. fluctuation function FP(n) for power-law trend

u(i) = APiλ, where i = 1, ..., Nmax, on the length of the trend Nmax.

(a) A vertical shift is observed in FP(n) for different values of Nmax — N1max and N2max.

The figure shows that the vertical shift , defined as F N1max

P (n)/FN2max

P (n), does not depend

on Nmax but only on the ratio N1max/N2max, suggesting that FP(n) ∼ (Nmax)γ . (b)

Dependence of the vertical shift on the power λ.

FP(n) ∼ AP · nαλ · `τ(λ) · (Nmax)γ(λ) , (1.22)

For correlated noise, the r.m.s. fluctuation function Fη(n) depends on the box size n

(Eq. (1.6)) and on the order ` of DFA-` (Sec. 1.6.2 and Fig. 1.13(a), (d)), and does not

depend on the length of the signal Nmax. Thus we have the following expression for Fη(n)

Fη(n) ∼ nα`τ(α), (1.23)

To estimate the crossover scale n× observed in the apparent scaling of FηP(n) for a

correlated noise superposed with a power-law trend [Fig. 1.11(a), (b) and Fig. 1.13(a)], we

employ the superposition rule (Eq. (1.18)). From Eq. (1.22) and Eq. (1.23), we obtain n×

as the intercept between FP(n) and Fη(n):

n× ∼
[

Alτ(λ)−τ(α) (Nmax)γ
]1/(α−αλ)

. (1.24)

To test the validity of this result, we consider the case of correlated noise with a linear

trend. For the case of a linear trend (λ = 1) when DFA-1 (` = 1) is applied, we have αλ = 2
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(see Sec. 1.6.1, Fig. 1.12(b)). Since in this case λ = ` = 1 > ` − 0.5 we have γ = λ − ` = 0

(see Sec.1.6.3 Fig. 1.14(b)), and from Eq. (1.24) we recover Eq. (1.9).

1.7 General rules

1.7.1 Superposition rule

Here we show how the DFA results for any two signals f and g [denoted as Ff (n) and Fg(n)]

relate with the DFA result for the sum of these two signals f+g [denoted as Ff+g(n), where n

is the box length (scale of analysis)]. In the general cases, we find |Ff−Fg| ≤ Ff+g ≤ Ff +Fg.

When the two signals are not correlated, we find that the following superposition rule is

valid: F 2
f+g = F 2

f + F 2
g . Here we derive these relations.

First we summarize again the procedure of the DFA method [1]. It includes the fol-

lowing steps: starting with an original signal u(i) of length Nmax, we integrate and obtain

y(k) =
k
∑

j=1
(u(j) − 〈u〉), where 〈u〉 is the mean of u(i). Next, we divide y(k) into non-

overlapping boxes of equal length n. In each box we fit the signal y(k) using a polyno-

mial function yn(k) = a0 + a1x(k) + a2x
2(k) + ... + asx

s(k), where x(k) is the x coordi-

nate corresponding to the kth signal point. We calculate the r.m.s. fluctuation function

F (n) =

√

1
Nmax

Nmax
∑

k=1
[y(k) − yn(k)]2.

To prove the superposition rule, we first focus on one particular box along the signal.

In order to find the analytic expression of best fit in this box, we write

I(a0, ..., as) =
n
∑

k=1

[y(k) − (a0 + ... + asx
s(k))]2, (1.25)

where am, m = 0, ..., s are the same for all points in this box. “Best fit” requires that

am, m = 0, ..., s satisfy

∂I

∂am
= 0, m = 0, ...s (1.26)

Combining Eq. (1.25) with (1.26) we obtain s + 1 equations

ym = a0tm0 + a1tm1... + astms, m = 0, ..., s (1.27)
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where

ym =
n
∑

k=1

y(k)xm(k), tmj =
n
∑

k=1

xm+j(k), j = 0, ..., s (1.28)

From Eqs. (1.27) we determine a0, a1, .., as.

For the signals f , g and f + g after the integration, in each box we have

fm = a0tm0 + a1tm1... + astms, m = 0, ..., s

gm = a′0tm0 + a′1tm1... + a′stms, m = 0, ..., s

(f + g)m = a′′0tm0 + a′′1tm1... + a′′stms, m = 0, ..., s (1.29)

where fm, gm and (f + g)m correspond to ym in Eqs. (1.27).

Comparing the three groups of equations in Eqs. (1.29), we find that, when we add the

first two groups together, the left side becomes fm + gm = (f + g)m , which is precisely the

left side of the third group of equations. Thus we find

a′′m = am + a′m, m = 0, ..., s (1.30)

and for each point k in every box, the polynomial fits for the signals f , g and f + g satisfy

(f + g)n(k) = fn(k) + gn(k). (1.31)

This result can be extended to all boxes in the signals. For the signal f + g we obtain

F 2
f+g =

1

Nmax

Nmax
∑

k=1

[f(k) − fn(k)]2 + [g(k) − gn(k)]2

+2[f(k) − fn(k)][g(k) − gn(k)]. (1.32)

After the substitutions f(k)−fn(k) = Yf (k) and g(k)−gn(k) = Yg(k), we rewrite the above

equation as

F 2
f+g =

1

Nmax

[

Nmax
∑

k=1

(Yf (k))2 +
Nmax
∑

k=1

(Yg(k))2

+2
Nmax
∑

k=1

Yf (k)Yg(k)
]

= F 2
f + F 2

g +
2

Nmax

Nmax
∑

k=1

Yf (k)Yg(k). (1.33)
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In the general case, we can utilize the Cauchy inequality

∣

∣

∣

∣

∣

Nmax
∑

k=1

Yf (k)Yg(k)

∣

∣

∣

∣

∣

≤
(

Nmax
∑

k=1

(Yf (k))2
)1/2(Nmax

∑

k=1

(Yg(k))2
)1/2

(1.34)

and we find

(Ff − Fg)
2 ≤ F 2

f+g ≤ (Ff + Fg)
2

=⇒ |Ff − Fg| ≤ Ff+g ≤ Ff + Fg. (1.35)

From Eqs. (1.27) for m = 0, in every box we have
n
∑

k=1
y(k) =

n
∑

k=1
yn(k). Thus we obtain

Nmax
∑

k=1
Yf (k) =

Nmax
∑

k=1
Yg(k) = 0 where Yf (k) and Yg(k) fluctuate around zero. When Yf (k)

and Yg(k) are not correlated, the value of the third term in Eq. (1.33) is close to zero and

we obtain the following superposition rule

F 2
f+g = F 2

f + F 2
g . (1.36)

1.8 Conclusion and Summary

In this section we consider different types of trends superposed on correlated noise, and

study how these trends affect the scaling behavior of the noise. We demonstrate that

there is a competition between a trend and a noise, and that this competition can lead to

crossovers in the scaling. We investigate the features of these crossovers, their dependence

on the properties of the noise and the superposed trend. Surprisingly, we find that crossovers

which are a result of trends can exhibit power-law dependences on the parameters of the

trends. We show that these crossover phenomena can be explained by the superposition

of the separate results of the DFA method on the noise and on the trend, assuming that

the noise and the trend are not correlated, and that the scaling properties of the noise and

the apparent scaling behavior of the trend are known. Our work may provide some help to

differentiate between different types of crossovers — e.g. crossovers which separate scaling
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regions with different correlation properties may differ from crossovers which are an artifact

of trends. The results we present here could be useful for identifying the presence of trends

and to accurately interpret correlation properties of noisy data.

Chapter 2

Effect of Nonstationarities on

Detrended Fluctuation Analysis

2.1 Overview

Detrended fluctuation analysis (DFA) is a scaling analysis method used to quantify long-

range power-law correlations in signals. Many physical and biological signals are “noisy”,

heterogeneous and exhibit different types of nonstationarities, which can affect the corre-

lation properties of these signals. We systematically study the effects of three types of

nonstationarities often encountered in real data. Specifically, we consider nonstationary

sequences formed in three ways: (i) stitching together segments of data obtained from

discontinuous experimental recordings, or removing some noisy and unreliable parts from

continuous recordings and stitching together the remaining parts — a “cutting” procedure

commonly used in preparing data prior to signal analysis; (ii) adding to a signal with known

correlations a tunable concentration of random outliers or spikes with different amplitude,

and (iii) generating a signal comprised of segments with different properties — e.g. dif-

ferent standard deviations or different correlation exponents. We compare the difference

between the scaling results obtained for stationary correlated signals and correlated signals

with these three types of nonstationarities. We find that introducing nonstationarities to

stationary correlated signals leads to the appearance of crossovers in the scaling behavior

36
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and we study how the characteristics of these crossovers depend on: (a) the fraction and

size of the parts cut out from the signal; (b) the concentration of spikes and their ampli-

tudes; (c) the proportion between segments with different standard deviations or different

correlations; and (d) the correlation properties of the stationary signal. We show how to

develop strategies for pre-processing “raw” data prior to analysis, which will minimize the

effects of nonstationarities on the scaling properties of the data and how to interpret the

results of DFA for complex signals with different local characteristics.

2.2 Introduction to this chapter

In recent years, there has been growing evidence indicating that many physical and biological

systems have no characteristic length scale and exhibit long-range power-law correlations.

Traditional approaches such as the power-spectrum and correlation analysis are suited to

quantify correlations in stationary signals [65, 66]. However, many signals which are out-

puts of complex physical and biological systems are nonstationary — the mean, standard

deviation and higher moments, or the correlation functions are not invariant under time

translation [65, 66]. Nonstationarity, an important aspect of complex variability, can often

be associated with different trends in the signal or heterogeneous segments (patches) with

different local statistical properties. To address this problem, detrended fluctuation analysis

(DFA) was developed to accurately quantify long-range power-law correlations embedded

in a nonstationary time series [1, 4]. This method provides a single quantitative parameter

— the scaling exponent α — to quantify the correlation properties of a signal. One advan-

tage of the DFA method is that it allows the detection of long-range power-law correlations

in noisy signals with embedded polynomial trends that can mask the true correlations in

the fluctuations of a signal. The DFA method has been successfully applied to research

fields such as DNA [1–3, 17, 24–29, 67–69], cardiac dynamics [5–16, 18–23, 70–72], human

gait [73], meteorology [48], climate temperature fluctuations [56, 57, 59], river flow and dis-

charge [49,50], neural receptors in biological systems [74], and economics [35–47]. The DFA

method may also help identify different states of the same system with different scaling
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behavior — e.g., the scaling exponent α for heart-beat intervals is different for healthy and

sick individuals [14, 16] as well as for waking and sleeping states [10, 21].

To understand the intrinsic dynamics of a given system, it is important to analyze and

correctly interpret its output signals. One of the common challenges is that the scaling

exponent is not always constant (independent of scale) and crossovers often exist — i.e.,

the value of the scaling exponent α differs for different ranges of scales [5, 10, 16, 75, 76]. A

crossover is usually due to a change in the correlation properties of the signal at different

time or space scales, though it can also be a result of nonstationarities in the signal. A

recent work considered different types of nonstationarities associated with different trends

(e.g., polynomial, sinusoidal and power-law trends) and systematically studied their effect

on the scaling behavior of long-range correlated signals [62]. Here we consider the effects

of three other types of nonstationarities which are often encountered in real data or result

from “standard” data pre-processing approaches.

(i) Signals with segments removed

First we consider a type of nonstationarity caused by discontinuities in signals. Discontinu-

ities may arise from the nature of experimental recordings – e.g., stock exchange data are not

recorded during the nights, weekends and holidays [35–42]. Alternatively, discontinuities

may be caused by the fact that some noisy and unreliable portions of continuous recordings

must be discarded, as often occurs when analyzing physiological signals [5–16,18–23,70–72].

In this case, a common pre–processing procedure is to cut out the noisy, unreliable parts of

the recording and stitch together the remaining informative segments before any statistical

analysis is performed. One immediate problem is how such cutting procedure will affect the

scaling properties of long-range correlated signals. A careful consideration should be given

when interpreting results obtained from scaling analysis, so that an accurate estimate of

the true correlation properties of the original signal may be obtained.

(ii) Signals with random spikes
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A second type of nonstationarity is due to the existence of spikes in data, which is very com-

mon in real life signals [5–16,18–23,70–73]. Spikes may arise from external conditions which

have little to do with the intrinsic dynamics of the system. In this case, we must distinguish

the spikes from normal intrinsic fluctuations in the system’s output and filter them out

when we attempt to quantify correlations. Alternatively, spikes may arise from the intrinsic

dynamics of the system, rather than being an epiphenomenon of external conditions. In

this second case, careful considerations should be given as to whether the spikes should be

filtered out when estimating correlations in the signal, since such “intrinsic” spikes may be

related to the properties of the noisy fluctuations. Here, we consider only the simpler case

– namely, when the spikes are independent of the fluctuations in the signal. The problem

is how spikes affect the scaling behavior of correlated signals, e.g., what kind of crossovers

they may possibly cause. We also demonstrate to what extent features of the crossovers

depend on the statistical properties of the spikes. Furthermore, we show how to recognize

if a crossover indeed indicates a transition from one type of underlying correlations to a

different type, or if the crossover is due to spikes without any transition in the dynamical

properties of the fluctuations.

(iii) Signals with different local behavior

A third type of nonstationarity is associated with the presence of segments in a signal

which exhibit different local statistical properties, e.g., different local standard deviations

or different local correlations. Some examples include: (a) 24 hour records of heart rate

fluctuations are characterized by segments with larger standard deviation during stress and

physical activity and segments with smaller standard deviation during rest [6]; (b) studies

of DNA show that coding and non-coding regions are characterized by different types of

correlations [3, 67]; (c) brain wave analysis of different sleep stages (rapid eye movement

[REM] sleep, light sleep and deep sleep) indicates that the signal during each stage may

have different correlation properties [77]; (d) heartbeat signals during different sleep stages

exhibit different scaling properties [21]. For such complex signals, results from scaling anal-
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ysis often reveal a very complicated structure. It is a challenge to quantify the correlation

properties of these signals. Here, we take a first step toward understanding the scaling

behavior of such signals.

We study these three types of nonstationarities embedded in correlated signals. We

apply the DFA method to stationary correlated signals and identical signals with artificially

imposed nonstationarities, and compare the difference in the scaling results. (i) We find

that cutting segments from a signal and stitching together the remaining parts does not

affect the scaling for positively correlated signals. However, this cutting procedure strongly

affects anti-correlated signals, leading to a crossover from an anti-correlated regime (at

small scales) to an uncorrelated regime (at large scales). (ii) For the correlated signals

with superposed random spikes, we find that the scaling behavior is a superposition of the

scaling of the signal and the apparent scaling of the spikes. We analytically prove this

superposition relation by introducing a superposition rule. (iii) For the case of complex

signals comprised of segments with different local properties, we find that their scaling

behavior is a superposition of the scaling of the different components — each component

containing only the segments exhibiting identical statistical properties. Thus, to obtain the

scaling properties of the signal, we need only to examine the properties of each component

— a much simpler task than analyzing the original signal.

The layout of the section is as follows: In Sec. 2.3, we describe how we use DFA method to

quantify nonstationary signals. In Sec. 2.4, we compare the scaling properties of correlated

signals before and after removing some segments from the signals. In Sec. 2.5, we consider

the effect of random spikes on correlated signals. In Sec. 2.6, we study signals comprised of

segments with different local behavior. We systematically examine all resulting crossovers,

their conditions of existence, and their typical characteristics associated with the different

types of nonstationarity. We summarize our findings in Sec. 2.7.
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2.3 Method

We use DFA method [1, 2] to quantify the correlation properties of nonstationary signals.

For details see Sec. 1.3.

We note that for anti-correlated signals, the scaling exponent obtained from the DFA

method overestimates the true correlations at small scales [62]. To avoid this problem,

one needs first to integrate the original anti-correlated signal and then apply the DFA

method [62]. The correct scaling exponent can thus be obtained from the relation between

n and F (n)/n [instead of F (n)]. In the following sections, we first integrate the signals

under consideration, then apply DFA-2 to remove linear trends in these integrated signals.

In order to provide a more accurate estimate of F (n), the largest box size n we use is

Nmax/10, where Nmax is the total number of points in the signal.

We compare the results of the DFA method obtained from the nonstationary signals

with those obtained from the stationary signal u(i) and examine how the scaling proper-

ties of a detrended fluctuation function F (n) change when introducing different types of

nonstationarities.

2.4 Removing and stitching together remaining segments

In this section, we study the effect of nonstationarity caused by removing segments of

a given length from a signal and stitching together the remaining parts — a “cutting”

procedure often used in pre-processing data prior to analysis. To address this question, we

first generate a stationary correlated signal u(i) (see Sec. 1.3) of length Nmax and a scaling

exponent α, using the modified Fourier filtering method [61]. Next, we divide this signal

into Nmax/W non-overlapping segments of size W and randomly remove some of these

segments. Finally, we stitch together the remaining segments in the signal u(i) [Fig. 2.1(a)],

thus obtaining a surrogate nonstationary signal which is characterized by three parameters:

the scaling exponent α, the segment size W and the fraction of the signal u(i), which is

removed.
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Figure 2.1: Effects of the “cutting” procedure on the scaling behavior of stationary corre-

lated signals.

Nmax = 220 is the number of points in the signals (standard deviation σ = 1) and W is

the size of the cutout segments. (a) A stationary signal with 10% of the points removed.

The removed parts are presented by shaded segments of size W = 20 and the remaining

parts are stitched together. (b) Scaling behavior of nonstationary signals obtained from an

anti-correlated stationary signal (scaling exponent α < 0.5) after the cutting procedure. A

crossover from anti-correlated to uncorrelated (α = 0.5) behavior appears at scale n×. The

crossover scale n× decreases with increasing the fraction of points removed from the signal.

Dependence of the crossover scale n× on the fraction (c) and on the size W (d) of the

cutout segments for anti-correlated signals with different scaling exponent α. (e) Cutting

procedure applied to correlated signals (α > 0.5).
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We find that the scaling behavior of such a nonstationary signal strongly depends on

the scaling exponent α of the original stationary correlated signal u(i). As illustrated in

Fig. 2.1(b), for a stationary anti-correlated signal with α = 0.1, the cutting procedure causes

a crossover in the scaling behavior of the resultant nonstationary signal. This crossover

appears even when only 1% of the segments are cut out. At the scales larger than the

crossover scale n× the r.m.s. fluctuation function behaves as F (n) ∼ n0.5, which means

an uncorrelated randomness, i.e., the anti-correlation has been completely destroyed in this

regime. For all anti-correlated signals with exponent α < 0.5, we observe a similar crossover

behavior. This result is surprising, since researchers often take for granted that a cutting

procedure before analysis does not change the scaling properties of the original signal. Our

simulation shows that this assumption is not true, at least for anti-correlated signals.

Next, we investigate how the two parameters — the segment size W and the fraction

of points cut out from the signal — control the effect of the cutting procedure on the

scaling behavior of anti-correlated signals. For the fixed size of the segments (W = 20),

we find that the crossover scale n× decreases with increasing the fraction of the cutout

segments [Fig. 2.1(c)]. Furthermore, for anti-correlated signals with small values of the

scaling exponent α, e.g., α = 0.1 and α = 0.2, we find that n× and the fraction of the

cutout segments display an approximate power-law relationship. For a fixed fraction of

the removed segments, we find that the crossover scale n× increases with increasing the

segment size W [Fig. 2.1(d)]. To minimize the effect of the cutting procedure on the

correlation properties, it is advantageous to cut smaller number of segments of larger size

W . Moreover, if the segments which need to be removed are too close (e.g., at a distance

shorter than the size of the segments), it may be advantageous to cut out both the segments

and a part of the signal between them. This will effectively increase the size of the segment

W without substantially changing the fraction of the signal which is cut out, leading to an

increase in the crossover scale n×. Such strategy would minimize the effect of this type of

nonstationarity on the scaling properties of data. For small values of the scaling exponent α

(α < 0.25), we find that n× and W follow power-law relationships [Fig. 2.1(d)]. The reason
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we do not observe a power-law relationship between n× and W and between n× and the

fraction of cutout segments for the values of the scaling exponent α close to 0.5 may be due

to the fact that the crossover regime becomes broader when it separates scaling regions with

similar exponents, thus leading to uncertainty in defining n×. For a fixed W and a fixed

fraction of the removed segments [see Figs. 2.1(c) and (d)], we observe that n× increases

with the increasing value of the scaling exponent α, i.e., the effect of the cutting procedure

on the scaling behavior decreases when the anti-correlations in the signal are weaker (α

closer to 0.5).

Finally, we consider the case of correlated signals u(i) with 1.5 > α > 0.5. Surprisingly,

we find that the scaling of correlated signals is not affected by the cutting procedure. This

observation remains true independently of the segment size W — from very small W = 5

up to very large W = 5000 segments — even when up to 50% of the segments are removed

from a signal with Nmax ∼ 106 points [Fig. 2.1(e)].

2.5 Random Outliers or Spikes

In this section, we consider nonstationarity related to the presence of random spikes in data

and we study the effect of this type of nonstationarity on the scaling properties of correlated

signals. First, we generate surrogate nonstationary signals by adding random spikes to a

stationary correlated signal u(i) [see Sec. 1.3 and Fig. 2.2(a-c)].

We find that the correlation properties of the nonstationary signal with spikes depend

on the scaling exponent α of the stationary signal and the scaling exponent αsp of the spikes.

When uncorrelated spikes (αsp = 0.5) are added to a correlated or anti-correlated stationary

signal [Fig 2.2(d) and (e)], we observe a change in the scaling behavior with a crossover

at a characteristic scale n×. For anti-correlated signals (α < 0.5) with random spikes, we

find that at scales smaller than n×, the scaling behavior is close to the one observed for

the stationary anti-correlated signal without spikes, while for scales larger than n×, there

is a crossover to random behavior. In the case of correlated signals (α > 0.5) with random

spikes, we find a different crossover from uncorrelated behavior at small scales, to correlated



45

−12

0

12
(a) Signal (α=0.2 σ=1)

0 500 1000
i

−12

0

12
(c) Signal + spikes

−12

0

12
Si

gn
al (b) Spikes: 5%, Asp=4

10
0

10
1

10
2

10
3

10
4

10
5

n

10
−2

10
−1

10
0

10
1

F
(n

)/
n

Anti−corr. signal+spikes
Anti−corr. signal Fη(n)/n: α=0.2 
Spikes Fsp(n)/n: 5%, Asp=1
Superposition rule

(d)

αsp=0.5

α=0.2

nx

10
0

10
1

10
2

10
3

10
4

10
5

n

10
−1

10
0

10
1

10
2

F
(n

)/
n

Correlated signal+spikes
Corr. signal Fη(n)/n: α=0.8
Spikes Fsp(n)/n: 5%, Asp=10
Superposition rule

(e) 

α=0.8

αsp=0.5

nx

Figure 2.2: Effects of random spikes on the scaling behavior of stationary correlated signals.

(a) An example of an anti-correlated signal u(i) with scaling exponent α = 0.2, Nmax =

220 and standard deviation σ = 1. (b) A series of uncorrelated spikes (αsp = 0.5) at

5% randomly chosen positions (concentration p = 0.05) and with uniformly distributed

amplitudes Asp in the interval [−4, 4]. (c) The superposition of the signals in (a) and

(b). (d) Scaling behavior of an anti-correlated signal u(i) (α = 0.2) with spikes (Asp = 1,

p = 0.05, αsp = 0.5). (e) Scaling behavior of a correlated signal u(i) (α = 0.8) with spikes

(Asp = 10, p = 0.05, αsp = 0.5).

behavior at large scales with an exponent close to the exponent of the original stationary

correlated signal. Moreover, we find that spikes with a very small amplitude can cause

strong crossovers in the case of anti-correlated signals, while for correlated signals, identical
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concentrations of spikes with a much larger amplitude do not affect the scaling. Based on

these findings, we conclude that uncorrelated spikes with a sufficiently large amplitude can

affect the DFA results at large scales for signals with α < 0.5 and at small scales for signals

with α > 0.5.

To better understand the origin of this crossover behavior, we first study the scaling

of the spikes only [see Fig. 2.2(b)]. By varying the concentration p (0 ≤ p ≤ 1) and the

amplitude Asp of the spikes in the signal, we find that for the general case when the spikes

may be correlated, the r.m.s. fluctuation function behaves as

Fsp(n)/n = k0
√

pAspn
αsp , (2.1)

where k0 is a constant and αsp is the scaling exponent of the spikes.

Next, we investigate the analytical relation between the DFA results obtained from

the original correlated signal, the spikes and the superposition of signal and spikes. Since

the original signal and the spikes are not correlated, we can use a superposition rule (see

Sec. 1.7.1) to derive the r.m.s. fluctuation function F (n)/n for the correlated signal with

spikes:

[F (n)/n]2 = [Fη(n)/n]2 + [Fsp(n)/n]2, (2.2)

where Fη(n)/n and Fsp(n)/n are the r.m.s. fluctuation function for the signal and the spikes,

respectively. To confirm this theoretical result, we calculate
√

[Fη(n)/n]2 + [Fsp(n)/n]2 [see

Figs. 2.2(d), (e)] and find this Eq. (2.2) is remarkably consistent with our experimental

observations.

Using the superposition rule, we can also theoretically predict the crossover scale n× as

the intercept between Fη(n)/n and Fsp(n)/n, i.e., where Fη(n×) = Fsp(n×). We find that

n× =

(√
pAsp

k0

b0

)1/(α−αsp)

, (2.3)

since the r.m.s. fluctuation function for the signal and the spikes are Fη(n)/n = b0n
α [62]

and Fsp(n)/n = k0
√

pAspn
αsp [Eq. (2.1)], respectively. This result predicts the position of

the crossover depending on the parameters defining the signal and the spikes.
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Our result derived from the superposition rule can be useful to distinguish two cases:

(i) the correlated stationary signal and the spikes are independent (e.g., the case when

a correlated signal results from the intrinsic dynamics of the system while the spikes are

due to external perturbations); and (ii) the correlated stationary signal and the spikes

are dependent (e.g., both the signal and the spikes arise from the intrinsic dynamics of

the system). In the latter case, the identity in the superposition rule is not correct (see

Sec. 1.7.1).

2.6 Signals comprised of segments with different properties

Next, we study the effect of nonstationarities on complex patchy signals where different

segments show different local behavior. This type of nonstationarity is very common in

real world data [3, 6, 21, 67, 77]. Our discussion of signals composed of only two types of

segments is limited to two simple cases: (A) different standard deviations and (B) different

correlations.

2.6.1 Signals with different local standard deviations

Here we consider nonstationary signals comprised of segments with the same local scaling

exponent, but different local standard deviations. We first generate a stationary correlated

signal u(i) (see Sec. 1.3) with fixed standard deviation σ1 = 1. Next, we divide the signal

u(i) into non-overlapping segments of size W . We then randomly choose a fraction p of

the segments and amplify the standard deviation of the signal in these segments, σ2 = 4

[Fig.2.3(a)]. Finally, we normalize the entire signal to global standard deviation σ = 1 by

dividing the value of each point of the signal by
√

(1 − p)σ2
1 + pσ2

2.

For nonstationary anti-correlated signals (α < 0.5) with segments characterized by two

different values of the standard deviation, we observe a crossover at scale n× [Fig.2.3(b)].

For small scales n < n×, the behavior is anti-correlated with an exponent equal to the

scaling exponent α of the original stationary anti-correlated signal u(i). For large scales

n > n×, we find a transition to random behavior with exponent 0.5, indicating that the
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Figure 2.3: Scaling behavior of nonstationary correlated signals with different local standard

deviation.

(a) Anti-correlated signal (α = 0.1) with standard deviation σ1 = 1 and amplified segments

with standard deviation σ2 = 4. The size of each segment is W = 20 and the fraction of

the amplified segments is p = 0.1 from the total length of the signal (Nmax = 220). (b)

Scaling behavior of the signal in (a) for a different fraction p of the amplified segments (after

normalization of the globe standard deviation to unity). (c) Dependence of the crossover

scale n× on the fraction p of amplified segments for the signal in (a). (d) Scaling behavior

of nonstationary signals obtained from correlated stationary signals (1 > α > 0.5) with

standard deviation σ1 = 1, for a different fraction of the amplified segments with σ2 = 4.

anti-correlations have been destroyed. The dependence of crossover scale n× on the fraction

p of segments with larger standard deviation is shown in Fig. 2.3(c). The dependence is not

monotonic because for p = 0 and p = 1, the local standard deviation is constant throughout

the signal, i.e., the signal becomes stationary and thus there is no crossover. Note the

asymmetry in the value of n× — a much smaller value of n× for p = 0.05 compared to

p = 0.95 [see Fig. 2.3(b-c)]. This result indicates that very few segments with a large

standard deviation (compared to the rest of the signal) can have a strong effect on the

anti-correlations in the signal. Surprisingly, the same fraction of segments with a small

standard deviation (compared to the rest of the signal) does not affect the anti-correlations
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up to relatively large scales.

For nonstationary correlated signals (α > 0.5) with segments characterized by two dif-

ferent values of the standard deviation, we surprisingly find no difference in the scaling of

F (n)/n, compared to the stationary correlated signals with constant standard deviation

[Fig. 2.3(d)]. Moreover, this observation remains valid for different sizes of the segments W

and for different values of the fraction p of segments with larger standard deviation. We

note that in the limiting case of very large values of σ2/σ1, when the values of the signal

in the segments with standard deviation σ1 could be considered close to “zero”, the results

in Fig. 2.3(d) do not hold and we observe a scaling behavior similar to that of the signal in

Fig. 2.4(c) (see following section).

2.6.2 Signals with different local correlations

Next we consider nonstationary signals which consist of segments with identical standard

deviation (σ = 1) but different correlations. We obtain such signals using the following

procedure: (1) we generate two stationary signals u1(i) and u2(i) (see Sec. 1.3) of identical

length Nmax and with different correlations, characterized by scaling exponents α1 and α2;

(2) we divide the signals u1(i) and u2(i) into non-overlapping segments of size W ; (3) we

randomly replace a fraction p of the segments in signal u1(i) with the corresponding seg-

ments of u2(i). In Fig. 2.4(a), we show an example of such a complex nonstationary signal

with different local correlations. In this Section, we study the behavior of the r.m.s. fluc-

tuation function F (n)/n. We also investigate F (n)/n separately for each component of the

nonstationary signal (which consists only of the segments with identical local correlations)

and suggest an approach, based on the DFA results, to recognize such complex structures

in real data.

In Fig. 2.4(d), we present the DFA result on such a nonstationary signal, composed of

segments with two different types of local correlations characterized by exponents α1 = 0.1

and α2 = 0.9. We find that at small scales, the slope of F (n)/n is close to α1 and at large

scales, the slope approaches α2 with a bump in the intermediate scale regime. This is not
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Figure 2.4: Scaling behavior of a nonstationary signal with two different scaling exponents.

(a) Nonstationary signal (length Nmax = 220, standard deviation σ = 1) which is a mixture

of correlated segments with exponent α1 = 0.1 (90% of the signal) and segments with

exponent α2 = 0.9 (10% of the signal). The segment size is W = 20; (b) the 90% component

containing all segments with α1 = 0.1 and the remaining segments (with α2 = 0.9) are

replaced by zero; (c) the 10% component containing all segments with α2 = 0.9 and the

remaining segments (with α1 = 0.1) are replaced by zero; (d) DFA results for the mixed

signal in (a), for the individual components in (b) and (c), and our prediction obtained from

the superposition rule.

surprising, since α1 < α2 and thus F (n)/n is bound to have a small slope (α1) at small

scales and a large slope (α2) at large scales. However, it is surprising that although 90% of

the signal consists of segments with scaling exponent α1, F (n)/n deviates at small scales

(n ≈ 10) from the behavior expected for an anti-correlated signal u(i) with exponent α1

[see, e.g., the solid line in Fig. 2.1(b)]. This suggests that the behavior of F (n)/n for a

nonstationary signal comprised of mixed segments with different correlations is dominated

by the segments exhibiting higher positive correlations even in the case when their relative

fraction in the signal is small. This observation is pertinent to real data such as: (i) heart

rate recordings during sleep where different segments corresponding to different sleep stages

exhibit different types of correlations [21]; (ii) DNA sequences including coding and non-

coding regions characterized by different correlations [3, 67, 69] and (iii) brain wave signals
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during different sleep stages [77].

To better understand the complex behavior of F (n)/n for such nonstationary signals,

we study their components separately. Each component is composed only of those segments

in the original signal which are characterized by identical correlations, while the segments

with different correlations are substituted with zeros [see Figs. 2.4(b) and (c)]. Since the

two components of the nonstationary signal in Fig. 2.4(a) are independent, based on the

superposition rule [Eq. (2.2)], we expect that the r.m.s. fluctuation function F (n)/n will

behave as
√

[F1(n)/n]2 + [F2(n)/n]2, where F1(n)/n and F2(n)/n are the r.m.s. fluctuation

functions of the components in Fig. 2.4(b) and Fig. 2.4(c), respectively. We find a remarkable

agreement between the superposition rule prediction and the result of the DFA method

obtained directly from the mixed signal [Fig 2.4(d)]. This finding helps us understand the

relation between the scaling behavior of the mixed nonstationary signal and its components.

Information on the effect of such parameters as the scaling exponents α1 and α2, the size

of the segments W and their relative fraction p on the scaling behavior of the components

provides insight into the scaling behavior of the original mixed signal. When the original

signal comes from real data, its composition is a priori unknown. A first step is to “guess”

the type of correlations (exponents α1 and α2) present in the signal, based on the scaling

behavior of F (n)/n at small and large scales [Fig 2.4(d)]. A second step is to determine

the parameters W and p for each component by matching the scaling result from the

superposition rule with the original signal. Hence in the following subsections, we focus on

the scaling properties of the components and how they change with p, α and W .

Dependence on the fraction of segments

First, we study how the correlation properties of the components depend on the fraction p

of the segments with identical local correlations.

For components containing segments with anti-correlations (0 < α < 0.5) and fixed

size W [Fig. 2.4(b)], we find a crossover to random behavior (α = 0.5) at large scales,

which becomes more pronounced (shift to smaller scales) when the fraction p decreases
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Figure 2.5: Dependence of the scaling behavior of components on the fraction p of the

segments with identical local correlations, emphasizing data collapse at small scales.

The segment size is W = 20 and the length of the components is Nmax = 220. (a) Com-

ponents containing anti-correlated segments (α = 0.1), at small scales (n ≤ W ). The slope

of F (n)/n is identical to that expected for a stationary (p = 1) signal with the same anti-

correlations. After rescaling F (n)/n by
√

p, at small scales all curves collapse on the curve

for the stationary anti-correlated signal. (b) Components containing correlated segments

(α = 0.9), at small scales (n ≤ W ). The slope of F (n)/n is identical to that expected for

a stationary (p = 1) signal with the same correlations. After rescaling F (n)/n by
√

p, at

small scales all curves collapse on the curve for the stationary correlated signal.

[Fig. 2.5(a)]. At small scales (n ≤ W ), the slope of F (n)/n is identical to that expected for

a stationary signal u(i) (i.e., p = 1) with the same anti-correlations [solid line in Fig. 2.5(a)].

Moreover, we observe a vertical shift in F (n)/n to lower values when the fraction p of

non-zero anti-correlated segments decreases. We find that at small scales after rescaling

F (n)/n by
√

p, all curves collapse on the curve for the stationary anti-correlated signal

u(i) [Fig. 2.5(a)]. Since at small scales (n ≤ W ) the behavior of F (n)/n does not depend

on the segment size W , this collapse indicates that the vertical shift in F (n)/n is due

only to the fraction p. Thus, to determine the fraction p of anti-correlated segments in a

nonstationary signal [mixture of anti-correlated and correlated segments, Fig. 2.4(a)] we

only need to estimate at small scales the vertical shift in F (n)/n between the mixed signal
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[Fig. 2.4(d)] and a stationary signal u(i) with identical anti-correlations. This approach is

valid for nonstationary signals where the fraction p of the anti-correlated segments is much

larger than the fraction of the correlated segments in the mixed signal [Fig. 2.4(a)], since

only under this condition the anti-correlated segments can dominate F (n)/n of the mixed

signal at small scales [Fig. 2.4(d)].

For components containing segments with positive correlations (0.5 < α < 1) and

fixed size W [Fig. 2.4(c)], we observe a similar behavior for F (n)/n, with collapse at small

scales (n ≤ W ) after rescaling by
√

p [Fig. 2.5(b)] (For α > 1, there are exceptions with

different rescaling factors, see Fig. 2.7). At small scales the values of F (n)/n for components

containing segments with positive correlations are much larger compared to the values

of F (n)/n for components containing an identical fraction p of anti-correlated segments

[Fig. 2.5(a)]. Thus, for a mixed signal where the fraction of correlated segments is not too

small (e.g., p ≥ 0.2), the contribution at small scales of the anti-correlated segments to

F (n)/n of the mixed signal [Fig. 2.4(d)] may not be observed, and the behavior (values

and slope) of F (n)/n will be dominated by the correlated segments. In this case, we

must consider the behavior of F (n)/n of the mixed signal at large scales only, since the

contribution of the anti-correlated segments at large scales is negligible. Hence, we next

study the scaling behavior of components with correlated segments at large scales.

For components containing segments with positive correlations and fixed size W [Fig. 2.4(c)],

we find that at large scales the slope of F (n)/n is identical to that expected for a station-

ary signal u(i) (i.e., p = 1) with the same correlations [solid line in Fig. 2.6(a)]. We also

observe a vertical shift in F (n)/n to lower values when the fraction p of non-zero correlated

segments in the component decreases. We find that after rescaling F (n)/n by p, at large

scales all curves collapse on the curve representing the stationary correlated signal u(i)

[Fig. 2.6(a)]. Since at large scales (n � W ), the effect of the zero segments of size W on the

r.m.s. fluctuation function F (n)/n for components with correlated segments is negligible,

even when the zero segments are 50% of the component [see Fig. 2.6(a)], the finding of a

collapse at large scales indicates that the vertical shift in F (n)/n is only due to the fraction
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p of the correlated segments. Thus, to determine the fraction p of correlated segments

in a nonstationary signal (which is a mixture of anti-correlated and correlated segments

[Fig. 2.4(a)]), we only need to estimate at large scales the vertical shift in F (n)/n between

the mixed signal [Fig. 2.4(d)] and a stationary signal u(i) with identical correlations.
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Figure 2.6: Dependence of scaling behavior of components on the fraction p of the segments

with identical local correlations, emphasizing data collapse at large scales.

The segment size is W = 20 and the length of the components is Nmax = 220. (a) Com-

ponents containing correlated segments (α = 0.9), at large scales (n � W ). The slope of

F (n)/n is identical to that expected for a stationary (p = 1) signal with the same correla-

tions. After rescaling F (n)/n by p, at large scales all curves collapse on the curve for the

stationary correlated signal. (b) Components containing anti-correlated segments (α = 0.1),

at large scales (n � W ). There is a crossover to random behavior (α = 0.5). After rescaling

F (n)/n by
√

p(1 − p), all curves collapse at large scales.

For components containing segments with anti-correlations and fixed size W [Fig. 2.4(b)],

we find that at large scales in order to collapse the F (n)/n curves (n � W ) [Fig. 2.5(a)]

we need to rescale F (n)/n by
√

p(1 − p) [see Fig. 2.6(b)]. Note that there is a difference

between the rescaling factors for components with anti-correlated and correlated segments

at small [Figs. 2.5(a-b)] and large [Figs. 2.6(a-b)] scales. We also note that for components

with correlated segments (α > 0.5) and sufficiently small p, there is a different rescaling

factor of
√

p(1 − p) in the intermediate scale regime [see Fig. 2.7].
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For components containing segments of white noise (α = 0.5), we find no change in

the scaling exponent as a function of the fraction p of the segments, i.e., α = 0.5 for the

components at both small and large scales. However, we observe at all scales a vertical shift

in F (n)/n to lower values with decreasing p: F (n)/n ∼ √
p.

Strongly correlated segments

For components containing segments with stronger positive correlations (α > 1) and fixed

W = 20, we find that at small scales (n < W ), the slope of F (n)/n does not depend on the

fraction p and is close to that expected for a stationary signal u(i) with identical correla-

tions (Fig. 2.7). Surprisingly we find that in order to collapse the F (n)/n curves obtained

for different values of the fraction p, we need to rescale F (n)/n by
√

p(1 − p) instead of

√
p, which is the rescaling factor at small scales for components containing segments with

correlations α < 1. Thus α = 1 is a threshold indicating when the rescaling factor changes.

Our simulations show that this threshold increases when the segment size W increases.

For components containing a sufficiently small fraction p of correlated segments (α >

0.5), we find that in the intermediate scale regime there is a crossover to random behavior

with slope 0.5. The F (n)/n curves obtained for different values of p collapse in the interme-

diate scale regime if we rescale F (n)/n by
√

p(1 − p) (Fig. 2.7). We note that this random

behavior regime at intermediate scales shrinks with increasing the fraction p of correlated

segments and, as expected, for p close to 1 this regime disappears (see the p = 0.9 curve in

Fig. 2.7).

Dependence on the size of segments

Next, we study how the scaling behavior of the components depends on the size of the

segments W .

First, we consider components containing segments with anti-correlations. For a fixed

value of the fraction p of the segments, we study how F (n)/n changes with W . At small

scales, we observe a behavior with a slope similar to the one for a stationary signal u(i) with
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Figure 2.7: Dependence of the scaling behavior of components on the fraction p of the

segments with strong positive correlations (α = 1.2).

The segment size is W = 20 and the length of the components is Nmax = 220. After

rescaling F (n)/n by
√

p(1 − p), all curves collapse at small scales (n < W ) with slope 1.2

and at intermediate scales with slope 0.5. The intermediate scale regime shrinks when p

increases.

identical anti-correlations [Fig. 2.8(a)]. At large scales, we observe a crossover to random

behavior (exponent α = 0.5) with an increasing crossover scale when W increases. At large

scales, we also find a vertical shift with increasing values for F (n)/n when W decreases

[Fig. 2.8(a)]. Moreover, we find that there is an equidistant vertical shift in F (n)/n when

W decreases by a factor of ten, suggesting a power-law relation between F (n)/n and W at

large scales.

For components containing correlated segments with a fixed value of the fraction p we

find that in the intermediate scale regime, the segment size W plays an important role in

the scaling behavior of F (n)/n [Fig. 2.8(b)]. We first focus on the intermediate scale regime

when both p = 0.1 and W = 20 are fixed [middle curve in Fig. 2.8(b)]. We find that for a

small fraction p of the correlated segments, F (n)/n has slope α = 0.5, indicating random

behavior [Fig. 2.8(b)] which shrinks when p increases [see Fig. 2.7]. Thus, for components

containing correlated segments, F (n)/n approximates at large and small scales the behavior
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Figure 2.8: Dependence of the scaling behavior of components on the segment size W .

The fraction p = 0.1 of the non-zero segments is fixed and the length of the components

is Nmax = 220. (a) Components containing anti-correlated segments (α = 0.1). At large

scales (n � W ), there is a crossover to random behavior (α = 0.5). An equidistant vertical

shift in F (n)/n when W decreases by a factor of ten suggests a power-law relation between

F (n)/n and W . (b) Components containing correlated segments (α = 0.9). At intermediate

scales, F (n)/n has slope α = 0.5, indicating random behavior. An equidistant vertical shift

in F (n)/n suggests a power-law relation between F (n)/n and W .

of a stationary signal with identical correlations (α = 0.9), while in the intermediate scale

regime there is a plateau of random behavior due to the random “jumps” at the borders

between the non-zero and zero segments [Fig. 2.4(c)]. Next, we consider the case when

the fraction of correlated segments p is fixed while the segment size W changes. We find

a vertical shift with increasing values for F (n)/n when W increases [Fig. 2.8(b)], opposite

to what we observe for components with anti-correlated segments [Fig. 2.8(a)]. Since the

vertical shift in F (n)/n is equidistant when W increases by a factor of ten, our finding

indicates a power-law relationship between F (n)/n and W .

Scaling Expressions

To better understand the complexity in the scaling behavior of components with correlated

and anti-correlated segments at different scales, we employ the superposition rule (see 1.7.1).
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For each component we have

F (n)/n =
√

[Fcorr(n)/n]2 + [Frand(n)/n]2, (2.4)

where Fcorr(n)/n accounts for the contribution of the correlated or anti-correlated non-zero

segments, and Frand(n)/n accounts for the randomness due to “jumps” at the borders be-

tween non-zero and zero segments in the component.

i) Components with correlated segments (α > 0.5)

At small scales n < W , our findings presented in Fig. 2.5(b) suggest that there is no

substantial contribution from Frand(n)/n. Thus from Eq. (2.4),

F (n)/n ≈ Fcorr(n)/n ∼ b0
√

pnα, (2.5)

where b0n
α is the r.m.s. fluctuation function for stationary (p = 1) correlated signals

[Eq. (1.9) and [62]].

Similarly, at large scales n � W , we find that the contribution of Frand(n)/n is negligible

[see Fig. 2.6(a)], thus from Eq. (2.4) we have

F (n)/n ≈ Fcorr(n)/n ∼ b0pnα. (2.6)

However, in the intermediate scale regime, the contribution of Frand(n)/n to F (n)/n is

substantial. To confirm this we use the superposition rule [Eq. (2.4)] and our estimates for

Fcorr(n)/n at small [Eq. (2.5)] and large [Eq. (2.6)] scales [We note that, for components

containing strongly correlated segments (e.g., α = 1.2 when W = 20, see Fig. 2.7), at small

scales the contribution of the correlated non-zero segments [Fcorr(n)/n] is still substantial,

however, we have F (n)/n ≈ Fcorr(n)/n ∼ A
√

p(1 − p)nα]. The result we obtain from

Frand(n)/n =
√

[F (n)/n]2 − [b0
√

pnα]2 − [b0pnα]2 (2.7)

overlaps with F (n)/n in the intermediate scale regime, exhibiting a slope of ≈ 0.5: Frand(n)/n ∼

n0.5 [Fig. 2.9(a)]. Thus, Frand(n)/n is indeed a contribution due to the random jumps
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between the non-zero correlated segments and the zero segments in the component [see

Fig. 2.4(c)].

Further, our results in Fig. 2.8(b) suggest that in the intermediate scale regime F (n)/n ∼

W gc(α) for fixed fraction p, where the power-law exponent gc(α) may be a function of

the scaling exponent α characterizing the correlations in the non-zero segments. Since

at intermediate scales Frand(n)/n dominates the scaling [Eq. (2.7) and Fig. 2.9(a)], from

Eq. (2.4) we find Frand(n)/n ≈ F (n)/n ∼ W gc(α). We also find that at intermediate scales,

F (n)/n ∼
√

p(1 − p) for fixed segment size W (see Fig. 2.7). Thus from Eq. (2.4) we find

Frand(n)/n ≈ F (n)/n ∼
√

p(1 − p). Hence we obtain the following general expression

Frand(n)/n ∼ h(α)
√

p(1 − p)W gc(α)n0.5. (2.8)

Here we assume that Frand(n)/n also depends directly on the type of correlations in the

segments through some function h(α).

To determine the form of gc(α) in Eq. (2.8), we perform the following steps:

(a) We fix the values of p and α, and from Eq. (2.7) we calculate the value of Frand(n)/n

for two different values of the segment size W , e.g., we choose W1 = 400 and W2 = 20.

(b) From the expression in Eq. (2.8), at the same scale n in the intermediate scale regime

we determine the ratio:

Frand(W1)/Frand(W2) = (W1/W2)
gc(α). (2.9)

(c) We plot Frand(W1)/Frand(W2) vs. α on a linear-log scale [Fig. 2.9(b)]. From the graph

and Eq. (2.9) we obtain the dependence

gc(α) =
log[Frand(W1)/Frand(W2)]

log(W1/W2)

=







Cα − C/2, 0.5 ≤ α ≤ 1

0.50, for α > 1,
(2.10)

where C = 0.87 ± 0.06. Note that gc(0.5) = 0.

To determine if Frand(n)/n depends on h(α) in Eq. (2.8), we perform the following steps:

(a) We fix the values of p and W and calculate the value of Frand(n)/n for two different
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Figure 2.9: Scaling behavior of components containing correlated segments (α > 0.5).

(a) F (n)/n exhibits two crossovers and three scaling regimes at small, intermediate and

large scales. From the superposition rule [Eq. (2.4)] we find that the small and large

scale regimes are controlled by the correlations (α = 0.9) in the segments [Fcorr(n)/n from

Eqs. (2.5) and (2.6)] while the intermediate regime [Frand(n)/n ∼ n0.5 from Eq. (2.7)] is

dominated by the random jumps at the borders between non-zero and zero segments. (b)

The ratio Frand(W1 = 400)/Frand(W2 = 20) in the intermediate scale regime for fixed p and

different values of α, and the ratio Frand(α)/Frand(α = 0.5) for fixed p and W = W1/W2.

Frand(n)/n is obtained from Eq. (2.7) and the ratios are estimated for all scales n in the

intermediate regime. The two curves overlap for a broad range of values for the exponent

α, suggesting that Frand(n)/n does not depend on h(α) [see Eqs. (2.8) and (2.13)].

values of the scaling exponent α, e.g., 0.5 and any other value of α from Eq. (2.7).

(b) From the expression in Eq. (2.8), at the same scale n in the intermediate scale regime

we determine the ratio:

Frand(α)

Frand(0.5)
=

h(α)

h(0.5)
W gc(α)−gc(0.5) =

h(α)

h(0.5)
W gc(α), (2.11)

since gc(0.5) = 0 from Eq. (2.10).

(c) We plot Frand(α)/Frand(0.5) vs. α on a linear-log scale [Fig. 2.9(b)] and find that when

W ≡ W1/W2 [in Eqs. (2.9) and (2.11)] this curve overlaps with Frand(W1)/Frand(W2) vs. α

[Fig. 2.9(b)] for all values of the scaling exponent 0.5 ≤ α ≤ 1.5. From this overlap and
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from Eqs. (2.9) and (2.11), we obtain

W gc(α) =
h(α)

h(0.5)
W gc(α) (2.12)

for every value of α, suggesting that h(α) = const and thus Frand(n)/n can finally be

expressed as:

Frand(n)/n ∼
√

p(1 − p)W gc(α)n0.5. (2.13)

ii) Components with anti-correlated segments (α < 0.5)

Our results in Fig. 2.5(a) suggest that at small scales n < W there is no substantial contri-

bution of Frand(n)/n and that:

F (n)/n ≈ Fcorr(n)/n ∼ b0
√

pnα, (2.14)

a behavior similar to the one we find for components with correlated segments [Eq. (2.5)].

In the intermediate and large scale regimes (n ≥ W ), from the plots in Fig. 2.6(b) and

Fig. 2.8(a) we find the scaling behavior of F (n)/n is controlled by Frand(n)/n and thus

F (n)/n ≈ Frand(n)/n ∼
√

p(1 − p)W ga(α)n0.5, (2.15)

where ga(α) = Cα − C/2 for 0 < α < 0.5 [see Fig. 2.9(b)] and the relation for Frand(n)/n

is obtained using the same procedure we followed for Eq. (2.13).

2.7 Conclusion

In this paper we studied the effects of three different types of nonstationarities using the DFA

correlation analysis method. Specifically, we consider sequences formed in three ways: (i)

stitching together segments of signals obtained from discontinuous experimental recordings,

or removing some noisy and unreliable segments from continuous recordings and stitching

together the remaining parts; (ii) adding random outliers or spikes to a signal with known

correlations, and (iii) generating a signal composed of segments with different properties
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— e.g. different standard deviations or different correlations. We compare the difference

between the scaling results obtained for stationary correlated signals and for correlated

signals with artificially imposed nonstationarities.

(i) We find that removing segments from a signal and stitching together the remaining parts

does not affect the scaling behavior of positively correlated signals (1.5 ≥ α > 0.5), even

when up to 50% of the points in these signals are removed. However, such a cutting proce-

dure strongly affects anti-correlated signals, leading to a crossover from an anti-correlated

regime (at small scales) to an uncorrelated regime (at large scales). The crossover scale n×

increases with increasing value of the scaling exponent α for the original stationary anti-

correlated signal. It also depends both on the segment size and the fraction of the points

cut out from the signal: (1) n× decreases with increasing fraction of cutout segments, and

(2) n× increases with increasing segment size. Based on our findings, we propose an ap-

proach to minimize the effect of cutting procedure on the correlation properties of a signal:

When two segments which need to be removed are on distances shorter than the size of the

segment, it is advantageous to cut out both the segments and the part of the signal between

them.

(ii) Signals with superposed random spikes. We find that for an anti-correlated signal with

superposed spikes at small scales, the scaling behavior is close to that of the stationary anti-

correlated signal without spikes. At large scales, there is a crossover to random behavior.

For a correlated signal with spikes, we find a different crossover from uncorrelated behavior

at small scales to correlated behavior at large scales with an exponent close to the exponent

of the original stationary signal. We also find that the spikes with identical density and

amplitude may cause strong effect on the scaling of an anti-correlated signal while they

have a much smaller or no effect on the scaling of a correlated signal — when the two

signals have the same standard deviations. We investigate the characteristics of the scaling

of the spikes only and find that the scaling behavior of the signal with random spikes is

a superposition of the scaling of the signal and the scaling of the spikes. We analytically

prove this superposition relation by introducing a superposition rule.
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(iii) Signals composed of segments with different local properties. We find that

(a) For nonstationary correlated signals comprised of segments which are characterized

by two different values of the standard deviation, there is no difference in the scaling be-

havior compared to stationary correlated signals with constant standard deviation. For

nonstationary anti-correlated signals, we find a crossover at scale n×. For small scales

n < n×, the scaling behavior is similar to that of the stationary anti-correlated signals

with constant standard deviation. For large scales n > n×, there is a transition to random

behavior. We also find that very few segments with large standard deviation can strongly

affect the anti-correlations in the signal. In contrast, the same fraction of segments with

standard deviation smaller than the standard deviation of the rest of the anti-correlated

signal has much weaker effect on the scaling behavior — n× is shifted to larger scales.

(b) For nonstationary signals consisting of segments with different correlations, the

scaling behavior is a superposition of the scaling of the different components — where each

component contains only the segments exhibiting identical correlations and the remaining

segments are replaced by zero. Based on our findings, we propose an approach to identify

the composition of such complex signals: A first step is to “guess” the type of correlations

from the DFA results at small and large scales. A second step is to determine the parameters

defining the components, such as the segment size and the fraction of non-zero segments.

We studied how the scaling characteristics of the components depend on these parameters

and provide analytic scaling expressions.

Part III

Statistical Physics Approaches to

Physiological Signals
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Chapter 3

Non-Random Fluctuations and

Multi-scale Dynamics of Human

Activity

3.1 Overview

We investigate if known extrinsic and intrinsic factors fully account for the complex features

observed in recordings of human activity as measured from forearm motion in subjects

undergoing their regular daily routine. We demonstrate that the apparently random forearm

motion possesses dynamic patterns characterized by robust scale-invariant and nonlinear

features. These patterns remain stable from one subject to another and are unaffected by

changes in the average activity level that occur within individual subjects throughout the

day and on different days of the week, since they persist during daily routine and when

the same subjects undergo time-isolation laboratory experiments designed to account for

the circadian phase and to control the known extrinsic factors. Further, by modeling the

scheduled events imposed throughout the laboratory protocols, we demonstrate that they

cannot account for the observed scaling patterns in activity fluctuations. We attribute these

patterns to a previously unrecognized intrinsic nonlinear multi-scale control mechanism of

human activity that is independent of known extrinsic factors such as random and scheduled
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events, as well as the known intrinsic factors which possess a single characteristic time scale

such as circadian and ultradian rhythms.

3.2 Introduction to this chapter

Control of human activity is complex, being influenced by many factors both extrinsic (work,

recreation, reactions to unforeseen random events) and intrinsic (the circadian pacemaker

that influences our sleep/wake cycle [78, 79] and ultradian oscillators with shorter time

scales [80, 81]). The extrinsic factors may account for the apparently random fluctuations

in human motion observed over short time scales while the intrinsic rhythms may account

for the underlying regularity in average activity level over longer periods of up to 24 h.

Further, human activity correlates with important physiological functions including whole

body oxygen consumption and heart rate [10,82–84].

3.3 Methods

Actiwatch devices are traditionally used to demarcate sleep versus wakefulness based on

average activity levels, or to observe the mean pattern of activity as it changes across the

day and night according to disease state (Fig. 3.1). The subject wears a wristwatch-sized

Actiwatch recorder (Mini-Mitter Co., OR, USA) that unobtrusively measures changes in

forearm acceleration in any plane (sensitive to 0.01g, where g is the acceleration due to

gravity) [85]. Each data point recorded in the device’s internal memory represents the

value of changes in acceleration sampled at 32 Hz and integrated over a 15-second epoch

length. Recordings are made continuously for different experimental protocols over several

weeks, yielding approximately 105 data points for each subject. Inhomogeneity of recording

sensitivity across the range of activities is accounted for in the analyses.

Traditionally activity fluctuations are considered as random noise and have been ignored.

We hypothesize that there are systematic patterns in the activity fluctuations that may be

independent of known extrinsic and intrinsic factors. To test our hypotheses, we evaluate the



67

0 24 48 72 96 120 144 168
0

2

4

28 36 44
Time (hour)

0

2

4

Wake period (16 hours/day)

Daily routine (1 week)

Random
Events Body ClockEvents

Scheduled Multi−scale
Activity

Regulation

Extrinsic factors Intrinsic factors
1 2 3 4

A
ct

iv
ity

 (
g)

Wake period (16 hours/day)

Figure 3.1: Independent contributors to the complex dynamics of human activity.

Include: 1© reaction to extrinsic random events, 2© scheduled activities and, 3© intrin-

sic factors, notably the endogenous circadian pacemaker which influences the sleep/wake

cycle. Our findings of scale-invariant activity patterns (Figs. 3.2-3.7) indicate a heretofore-

unidentified intrinsic multi-scale control of human activity 4©, which is independent of

other extrinsic and intrinsic factors such as 1©, 2©, and 3©. The second panel illustrates an

actual one-week recording of human activity [85] during the daily routine protocol. Data

structure highlights a 24-h sleep/wake periodic change in the mean activity — lowest dur-

ing sleep (filled bars). The third panel, expanding a 16-h section of wakefulness, also shows

patches of high and low average activity levels with apparent erratic fluctuations at various

time scales. The bottom left panel is an activity recording from the same subject during

the constant routine protocol with much lower average activity values compared to daily

routine. The clear 2-h cycle is a result of scheduled laboratory events. The bottom right

panel shows activity levels in the same subject during the forced desynchrony protocol,

characterized by a 28-h sleep/wake cycle (as opposed to the 24-h rhythm in activity data

during the daily routine).
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structure of human activity during wakefulness, using: (i) probability distribution analysis;

(ii) power spectrum analysis, and (iii) fractal scaling and nonlinear analysis. To elucidate the

presence of an intrinsic activity control center independent of known circadian, ultradian,

scheduled and random factors, we apply 3 complementary protocols.

• Daily routine protocol: We record activity data throughout two consecutive weeks in

16 healthy ambulatory domiciliary subjects (8 males, 8 females, 19-44 years, mean 27 years)

performing their routine daily activities. The only imposed constraints are that subjects go

to bed and arise at the same time each day (8 h sleep opportunity) and that they are not

permitted to have daytime naps (Fig. 3.1).

• Constant routine protocol: To assess intrinsic activity controllers (i.e. circadian or

other neural centers) independent of scheduled and random external influences, activ-

ity recordings are made in the laboratory throughout 38 h of constant posture (semi-

recumbent), wakefulness, environment (21oC, dim light [< 8 lux]), dietary intake and

scheduled events [86, 87]. This protocol is performed in a subset of subjects (7 males, 4

females) that participated in the daily routine protocol. These highly controlled and con-

stant experimental conditions result in reduced average and variance of activity levels.

• Forced desynchrony protocol: To test for the presence of heretofore unidentified intrinsic

activity control centers, independent of known activity regulators (circadian pacemaker),

while accounting for scheduled and random external influences, we employ the validated

Forced desynchrony (FD) protocol [79]. Six (4 male, 2 female) of the 16 subjects that

participated in the daily routine protocol completed the FD limb of the study. For eight

days subjects remain in constant dim light (to avoid “resetting” the body clock). Sleep

periods are delayed by 4 h every day, such that subjects live on recurring 28 h “days”, while

all scheduled activities become desynchronized from the endogenous circadian pacemaker.

Thus, as measurements occur across all phases of the circadian clock, the effect of intrinsic

circadian influences can be removed [79]. Average activity level and activity variance are

also significantly reduced due to laboratory-imposed restrictions on the subjects activity

(Fig. 3.1).
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3.4 Results and discussion

When the same subject is studied in different protocols, we find large differences in the

probability distributions (Fig. 3.2). For example, during wakefulness greater values of ac-

tivity occur most frequently during the daily routine, intermediate activity values occur

during the forced desynchrony, and the highest frequency of low activity values is seen dur-

ing the constant routine (Fig. 3.2a). Indeed, the largest activity values encountered during

the constant routine protocol are approximately two orders of magnitude less frequent than

similar activity values encountered in the daily routine protocol. We find major differences

between individuals in the distribution of activity values during the daily routine protocol

(Fig. 3.2b). Such differences are expected given the different daily schedules, environments,

and reactions to random events.

To test if the individual probability density curves follow a common functional form, we

appropriately rescale the distributions of activity values on both axes to account for differ-

ences in average activity level and standard deviation while preserving the normalization

to unit area. We divide the activity values by a constant, A0, and multiply the probability

density function by the same constant, where A0 is the activity value before rescaling of

each individual curve for which the cumulative probability (i.e., the area under the density

function curve) is 60%. We find a remarkable similarity in the shapes of the probability dis-

tributions for each subject in all three protocols (Figs. 3.2a, e), and for all individuals when

in the same protocol (Fig. 3.2f, g, h). The existence of a universal form of the probability

distribution, independent of activity level in all individuals and in all protocols (Fig. 3.3a),

suggests that a common underlying mechanism may account for the overall distribution of

activity.

This probability distribution when plotted on a log-log scale reveals different character-

istics above and below a distinct crossover point (Fig. 3.3a). At scales above the crossover

activity level there is pronounced non-Gaussian tail (Fig. 3.3a). This tail on the log-log

plot represents a power-law form, indicating an intrinsic self-similar structure for a range
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Figure 3.2: Common functional form for the probability distributions of activity values.

(a) Probability distributions of activity values during wakefulness for an individual subject

during 14 consecutive days of daily routine, 38 h of constant routine and 8 days of the forced

desynchrony protocol. Probability distributions for all subjects during (b) the daily routine

protocol, (c) the constant routine, and (d) the forced desynchrony protocol, indicate large

difference between individuals. (e) – (h) Same probability distributions as in (a) – (d), after

appropriately rescaling both axes. Data points for all subjects and for all three protocols

collapse onto a single curve.
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Figure 3.3: Group average of the rescaled distributions.

(a) During all three protocols. All distributions collapse onto a single curve, suggesting a

common underlying mechanism of activity regulation. The same rescaling procedure as in

Fig. 3.2 is used. (b) All individual distributions obtained for varied time windows during

the daily routine.

of activity values. Moreover, we find that the observed shape of the rescaled probability

distribution remains unchanged when the data series are reanalyzed using a variety of ob-

servation windows ranging from 15 s to 6 min (Fig. 3.3b). This stability of the probability

distribution over a range of time scales indicates that the underlying dynamic mechanisms

controlling the activity have similar statistical properties on different time scales. Statistical

self-similarity is a defining characteristic of fractal objects and is reminiscent of a wide class

of physical systems with universal scaling properties. Our finding of a universal form of

the probability distribution raises the possibility of an intrinsic mechanism that influences

activity values in a self-similar “fractal” manner, that is unrelated to the individual’s daily

and weekly schedules, reactions to the environment, the average level of activity, the phase

of the circadian pacemaker, and the time scale of observation.

We next perform power spectral analyses for all three protocols to determine whether

there exist any systematic intrinsic ultradian rhythms of activity with periods of less than 24

h duration [80,88]. The data for each individual exhibit occasional peaks in the daily routine

protocol for periods ranging from 30 min to 4 h. However, we find no systematic ultradian
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Figure 3.4: Group average power spectral densities for all three protocols.

Curves are vertically offset. Power spectra are shown with decreasing frequency from left

to right. Smooth behavior of the daily routine curve suggests absence of periodic rhythms

in the ultradian range. The spectral density peaks for the simulated scheduled activity

data representing controlled scheduled events during the protocol (bottom curve) match

the peaks observed in the original human activity data recorded during the forced desyn-

chrony protocol. Our analysis and simulation suggest that the observed peaks in the power

spectrum are due to scheduled laboratory events and cannot be attributed to endogenous

ultradian rhythms.

rhythms within individuals from week to week, and no systematic ultradian rhythms in the

group average for the daily routine protocol (Fig. 3.4). The only systematic rhythms that

are ostensibly in the ultradian range which emerge in the group data are at 4 h during the

forced desynchrony protocol (with harmonics at 2 h and 80 min) and at 2 h during the

constant routine protocol (with harmonics at 1 h and 30 min) (Fig. 3.1 and Fig. 3.4). These

peaks are caused by the controlled scheduled activities in the laboratory and are extrinsic

to the body as they also occur in simulated scheduled activity data that assumes specific

activity values for each scheduled behavior imposed throughout the laboratory protocols

(Fig. 3.4). Thus, we find no evidence of systematic intrinsic ultradian rhythms in our data.

To provide further insight into the dynamic control of activity, we next examine the tem-

poral organization in the fluctuations in activity values. We perform detrended fluctuation
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analysis (DFA) which quantifies correlations in the activity fluctuations after accounting for

nonstationarity in the data by subtracting underlying polynomial trends [1, 2, 62, 89]. The

DFA method quantifies the root mean square fluctuations, F (n), of a signal at different time

scales n. Power-law functional form, F (n) ∼ nα, indicates self-similarity (fractal scaling).

The parameter α, called the scaling exponent, quantifies the correlation properties in the

signal: if α=0.5, there is no correlation (random noise); if α < 0.5, the signal is anticorre-

lated, where large activity values are more likely to be followed by small activity values; if

α > 0.5, there are positive correlations, where large activity values are more likely to be

followed by large activity values (and vice versa for small activity values).
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Figure 3.5: Long-range fractal correlations and nonlinearity in activity fluctuations.

(a) DFA scaling of activity fluctuation for a subject during wakefulness, demonstrating

strong positive correlations on time scales from seconds to hours. (b) DFA scaling of the

magnitude series of activity increments for the same signals as in (a). A scaling expo-

nent αmag ≈ 0.8 of similar value is observed for all three protocols, consistent with robust

nonlinear dynamics.

Figure 3.5a shows that F (n) for a typical subject during wakefulness exhibits a power-law
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form over time scales from ≈ 1 min to ≈ 4 h. We find that the scaling exponent α is virtually

identical for records obtained during the first week of daily routine (α = 0.92±0.04, mean ±

standard deviation among subjects), the second week (α = 0.92±0.06) of the daily routine,

the constant routine protocol (α = 0.88 ± 0.05), and the forced desynchrony protocol (α =

0.92±0.03). The value of α ≈ 0.9 for all protocols and all individuals indicates that activity

fluctuations are characterized by strong long-range positive correlations, and thus are not

dominated by random factors. Furthermore, we find that this scaling behavior is not caused

by the scheduled activities because simulated scheduled activity data that are generated

by assigning a specific activity value for each scheduled event throughout the laboratory

protocols yields an exponent of α = 1.5 (Fig. 3.5a), which represents random-walk type

behavior. These results suggest that the activity fluctuations are not a consequence of

random events (in which case α would be 0.5) or scheduled events, but rather relate to

an underlying mechanism of activity control with stable fractal-like features over a wide

range of time scales from minutes to hours. Since mean activity levels and the amplitude

of the fluctuations are greatly reduced in the laboratory during the constant routine and

forced desynchrony protocols (Fig. 3.1), we obtain smaller values of F (n) (downward shift

of the lines in Fig. 3.5a). However there is no change in the scaling exponent α. Similarly,

the scaling exponents for the daily routine protocol are independent of the average activity

levels of the different subjects (Fig. 3.6a), the mean activity level on different days of the

week (Fig. 3.6b), and of the circadian phase, suggesting that this scaling pattern of activity

fluctuations appears to be an intrinsic feature.

To test for the presence of nonlinear properties of the data, we analyze the “magnitude

series” formed by taking the absolute values of the increments between consecutive activity

values [23]. Again, from detrended fluctuation analysis of this series, we find practically

identical scaling exponents, αmag, for all three protocols, despite large differences in mean

activity levels between protocols (Fig 3.5b). Moreover, all individuals have very similar val-

ues of the scaling exponent αmag (Fig. 3.6a), which are not systematically changed by the

protocol. For the group, during the first week of daily routine, we find αmag = 0.78 ± 0.06
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Figure 3.6: Stability of scaling and nonlinear features.

(a) Scaling exponents α and αmag (left scale), and average activity levels (right scale) for all

16 subjects obtained from a 14-day daily routine protocol. Although the average activity

level between subjects changes considerably (from 0.2 to 0.5), both scaling exponents are

consistent for all subjects, exhibiting a group average of α = 0.92 ± 0.05 and αmag =

0.77 ± 0.05. (b) Group average scaling exponents α and αmag calculated for different days

of the week. While the average activity level progressively increases throughout the week

(with a peak on Saturday and a minimum on Sunday), the group average scaling exponents

α and αmag remain practically constant, consistent with a robust underlying mechanism of

control characterized by fractal and nonlinear features which do not change with activity

level.

(mean ± standard deviation among subjects), during the second week αmag = 0.76 ± 0.05,

during the constant routine protocol αmag = 0.82±0.05, and during the forced desynchrony

protocol αmag = 0.80 ± 0.04. Since αmag ≈ 0.8(> 0.5), there are positive long-range corre-

lations in the magnitude series of activity increments, indicating the existence of nonlinear

properties related to Fourier phase interactions (Fig. 3.5b) [23, 70]. To confirm that the

observed positive correlations in the magnitude series indeed represent nonlinear features
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in the activity data, we do the following test: we generate a surrogate time series by per-

forming a Fourier transform on the activity recording from the same subject during daily

routine as in Fig. 5a, preserving the Fourier amplitudes but randomizing the phases, and

then performing an inverse Fourier transform. This procedure eliminates nonlinearities,

preserving only the linear features of the original activity recording such as the power spec-

trum and correlations. Thus, the new surrogate signal has the same scaling behavior with

α = 0.93 (Fig. 3.5a) as the original activity recording; however, it exhibits uncorrelated

behavior for the magnitude series (αmag = 0.5) (Fig. 3.5b). Our results show that the ac-

tivity data contains important phase correlations which are canceled in the surrogate signal

by the randomization of the Fourier phases, and that these correlations do not exist in the

simulated scheduled activity. Further, our tests indicate that these nonlinear features are

encoded in Fourier phase, suggesting an intrinsic nonlinear mechanism [70]. The similar

value of αmag for all three protocols and all individuals, which is different from αmag = 0.5

obtained for the simulated scheduled activity and for the phase randomized data, confirms

that the intrinsic dynamics possess nonlinear features that are independent of the daily and

weekly schedules, reaction to the environment, the average level of activity, and the phase

of the circadian pacemaker.

To determine whether or not there is any alteration of the intrinsic patterns for dominant

and non-dominant (left and right) hands [90], we record one week of activity data of the

left and right hands simultaneously for five additional subjects in the daily protocol. For

all subjects, we find that the form of activity distribution (Fig. 3.7a) and the power-law

correlations (Fig. 3.7b) are the same for dominant (more active) and non-dominant hands,

confirming that the observed intrinsic patterns are independent of activity level.

Finally, to ensure that the power-law correlations are not an artifact produced by the

instrument, we obtain ”test” activity data by attaching an Actiwatch to a 15 cm radius

disk, turning at constant angular velocity of 45 rpm (Fig. 3.8a). The activity values of the

Actiwatch fluctuate only slightly, and analysis of these random fluctuations reveals scaling

exponents α ≈ 0.5 and αmag ≈ 0.5 (Fig. 3.8b), which indicate random linear behavior.
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Figure 3.7: Comparison of left and right wrist activity.

(a) Distributions of left and right wrist activity for a typical subject. The subject is right-

handed, and the activity level and variance of the right wrist is larger than that of the left

wrist. As a result, compared to the left wrist, the right wrist has a smaller probability at

small activity level, and a larger probability at large activity level. (b) DFA results of left

and right wrist activity fluctuations reveal practically identical power-law correlations —

the same value of α. The smaller values of F (n) (vertical shift) for the left wrist are due to

the smaller average activity level and variance of the left hand.

Thus, the stable values of α and αmag observed in our subjects throughout the varied

protocols do not depend on the recording device, but instead these exponents are inherent

characteristics of the subjects, and that both hands have the same underlying dynamics of

activity regulation.

3.5 Summary

In summary, the findings reported here offer insights into the mechanisms of human wrist

activity control. Prior to our work, it has been a general belief, though never tested, that

fluctuations in activity during wakefulness are somewhat random, influenced mainly by

extrinsic factors such as reactions to unforeseen random events. Our findings of a stable form

for the probability distribution, long-range power-law correlations and nonlinear Fourier-
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Figure 3.8: Turning table test for the Actiwatch device suggests the observed scaling features

in activity fluctuations are not an artifact of the device.

(a) Data recorded from an Actiwatch placed on a disk rotating with constant angular ve-

locity. (b) DFA correlation analysis of the fluctuations in (a) shows random noise behavior,

in contrast to the strong positive correlations in activity fluctuations (Figs. 3.5, 3.7).

phase features on time scales from seconds to hours, and the consistency of our results among

individuals and for different protocols, suggest that there exist previously unrecognized

complex dynamic patterns of human activity that are unrelated to extrinsic factors or to

the average level of activity. We also show these scale-invariant patterns to be independent

of known intrinsic factors related to the circadian and to any ultradian rhythms. Notably, (i)

these patterns are unchanged when obtained at different phases of the circadian pacemaker;

(ii) we do not observe systematic intrinsic ultradian rhythms in activity among subjects

in the daily routine experiment; (iii) imposing strong extrinsic ultradian rhythms at 4 h

and 2 h in the laboratory protocols did not change the fractal scaling exponents α or αmag

or the form of the probability distribution; and (iv) we find consistent results over a wide

range of time scales. Together, these findings strongly suggest that our results are not a
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reflection of the basic rest activity cycles or ultradian rhythms. We attribute these novel

scale-invariant patterns to a robust intrinsic multi-scale mechanism of regulation (Fig. 3.1).

Further, our findings suggest that activity control may be based on a multiple-component

nonlinear feedback mechanism encompassing coupled neuronal nodes located both in the

central and peripheral nervous systems, each acting in a specific range of time scales [91].

This insight provides key elements and guidance for future studies focused on modeling

locomotor regulation [92,93] .

Chapter 4

Synchronization Patterns in

Cerebral Blood Flow and

Peripheral Blood Pressure under

Minor Stroke

4.1 Overview

Stroke is a leading cause of death and disability in the United States. The autoregulation

of cerebral blood flow that adapts to changes in systemic blood pressure is impaired after

stroke. We investigate blood flow velocities (BFV) from right and left middle cerebral

arteries (MCA) and beat-to-beat blood pressure (BP) simultaneously measured from the

finger, in 13 stroke and 11 healthy subjects using the mean value statistics and phase

synchronization method. We find an increase in the vascular resistance and a much stronger

cross-correlation with a time lag up to 20 seconds with the instantaneous phase increment

of the BFV and BP signals for the subjects with stroke compared to healthy subjects.

80
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4.2 Introduction to this chapter

Stroke is a leading cause of death and disability in people above certain age [94], yet many

factors that set the stage for stroke and determine the outcome after stroke are not well

understood.

Cerebral autoregulation involves several complex mechanisms maintaining steady blood

flow to the brain in the presence of systemic blood pressure fluctuations. These mecha-

nisms are impaired after an acute stroke and cerebral blood flow becomes dependent on

blood pressure [95, 96]. Therefore, cerebral blood flow declines with falling blood pressure

(which may lead to ischemia) and increases with rising blood pressure (which poses a risk of

hemorrhage). Activities of daily living, such as rest and exercise, sitting and standing-up,

even taking meals are associated with blood pressure fluctuations on a range of time scales.

For example, standing-up may induce transient hypotension, which requires rapid cerebral

vasodilatation to compensate for blood pressure decline and to maintain cerebral perfusion

in the upright position [97]. This complex mechanisms of cerebral regulation is still not well

understood. It is also not clear if cerebral autoregulation recovers after stroke [98]. Previous

studies suggest that cerebral blood flow declines on the stroke side during orthostatic stress,

posing a risk of reduced perfusion to the affected side of the brain [99].

Here we study the effects of stroke on cerebral autoregulation controlling the flow-

pressure relationship. Our goal is to determine the effects of orthostatic stress on the

dynamic relationship between blood flow velocities (BFV) in the middle cerebral arteries

and the peripheral blood pressure (BP) from healthy subjects and patients with stroke.

We find that the dynamics of flow-pressure regulation is impaired after a stroke and we

determine indices allowing us to characterize and quantitate healthy cerebral autoregulation

and its impairment after stroke.
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4.3 Experimental design and data acquisition

4.3.1 Study groups

In our study we have:

• 13 patients (six male, seven female) with documented chronic ischemic minor stroke

on MRI or CT (age 52.5 ± 7.3 years);

• 11 healthy subjects (age 47.2 ± 8.5 years).

4.3.2 Experimental protocol

All subjects participated in the following experimental protocol:

• Supine: subject rests in supine position for five minutes on the tilt table;

• Tilt: the table is moved upright to an 80 degree angle and the subject is in an upright

position for five minutes;

• (Tilt) Hyperventilation: subject is asked to breathe quickly at approximately 1 Hz fre-

quency for three minutes in an upright position. Hyperventilation induces hypocapnia

(reduced carbon dioxide), which is associated with vasoconstriction;

• (Tilt) CO2-rebreathing: The subject is asked to inhale deeply and hold the breath

for one minute, then breathe a mixture of air and 5% CO2 from rebreathing circuit

at a comfortable frequency for three minutes in an upright position. CO2 rebreath-

ing increases carbon dioxide above normal levels and induces hypercapnia, which is

associated with vasodilatation.

4.3.3 Data acquisition

Blood flow velocity (BFV):

Transcranial Dopplerultrasonography system (MultiDop X4, Neuroscan, Inc.) is used for

monitoring BFV in both MCAs. The right and left MCA is insonated from the temporal
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windows by placing the 2-MHz probe in the temporal area above the zygomatic arch. Each

probe is positioned to record the maximal BFV and fixed at a desired angle using a three-

dimensional positioning system attached to the light-metal probe holder. Special attention

is given to stabilize the probes, since their steady position is crucial for continuous BFV

recordings. Data are visually inspected and occasional extrasystoles and outlying values are

removed using linear interpolation. A Fourier transform of the Doppler shift [a difference

between the frequency of the emitted signal and its echo (frequency of reflected signal)] is

used to calculate BFV. Systolic, diastolic, and mean BFV are detected from the envelope

of MCA waveforms. A recent MRI study suggests that MCA diameter does not change

during hyperventilation and breath-holding [100].

Blood pressure (BP):

Beat-to-beat BP is recorded from the finger with a Finapres device (Ohmeda Monitoring

Systems, Englewood CO). With the finger positioned at the heart level and the temperature

kept constant, this device can reliably track BP changes over a prolonged period of time

[102].

BFV and BP signals are recorded simultaneously and the signal sampling frequency is 50

Hz.

4.4 Data

We first investigate the shape of BFV and BP signals for both healthy and stroke group

during four experimental stages. The BFV waveform changes during vasoconstriction and

vasodilation and therefore, we presume to be able to identify the subjects with impaired

autoregulation.

In Fig. 4.1, we show examples of BFV signals from right and left MCA as well as BP

signals from the finger during the tilt stage for one healthy subject and one stroke subject.

For both subjects, right and left BFV signals and BP signals display a periodic behavior

with a period of around one second, corresponding to heart frequency. Furthermore, for

each subject, the shape of two BFV signals and one BP signal all look similar (especially
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Figure 4.1: Right BFV, left BFV, and BP signals during tilt stage: (Left) One healthy

subject; (Right) One subject with stroke located in the right brain hemisphere.

BFV and BP signals have a similar shape and both are periodic signals with a period of

around one second, which reflects flow and pressure waveform during each heart beat. Data

from the stroke patient exhibit larger amplitude for the BFV signals and less pronounced

second notch in the BP waveform.

for two BFV signals): a rapid increment of signals at the beginning of each circle and then

a slow recovery in the rest of each circle. We also find some differences in the shape of

three signals between the two subjects shown in Fig. 4.1, however, we fail to find any group

differences in the shape of signals for the group of 13 stroke subjects and the group of 11

healthy subjects. Therefore, such differences seem to be reflecting only trivial individual

variability for different subjects. In summary, the shape of signals is not a good marker for

distinguishing stroke patients from healthy people.

In the next section, time domain analysis and synchronization techniques will be applied

to each subject to characterize two BFV signals and one BP signal.
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4.5 Cerebral blood flow and peripheral blood pressure

4.5.1 Time domain
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Figure 4.2: Mean values of BFV and BP signals during four experimental stages for all 24

subjects in our database.

The x axis indicates the subject index, healthy subjects are to the left of vertical dash line

and stroke patients are to the right. We find that in the tilt stage most stroke patients

have relatively lower BFV. Note that increased relative difference between the BFV and

BP mean values for the stroke patients compared to healthy subjects.

Several quantities have been used to quantify the properties of BFV and BP signals

and the possible relations between them. For example, we have measured the magnitude of

fluctuation (i.e., standard deviation) of BFV and BP signals for all subjects. From Fig. 4.1,

one may infer that the signals for stroke patients have a larger standard deviation, and the

BFV signals on the stroke side (e.g., right or left side in the brain) have a slightly smaller

standard deviation compared to the normal side. However, in any of the four stages, we

did not find any group differences for the standard deviation between these two groups.

The different standard deviation between subjects seems to be more an indication of the

individual variabilities in each subject than the indication of disease.

Instead, we find that the mean of signals in the tilt stage is a good quantity for de-
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termining the differences between healthy and stroke groups. As shown in Fig. 4.2, we

find that in the tilt stage, most stroke patients have relatively lower BFV in MCA. More

interesting, the exceptions, e.g., the 1st, 2nd, 4th, and the last stroke patients in Fig. 4.2,

are all female patients. Therefore, the mean of signals during tilt is a good marker for male

stroke patients, but only a fair marker for female stroke patients. However, the relationship

between the stroke type, size and location and co-morbidities (e.g., hypertension) needs to

be examined before conclusions can be made about this gender effect.

Based on the results shown in Fig. 4.2, we further calculated the BP/BFV ratio of the

mean of signals for all subjects (see Fig. 4.3). In medical science, this ratio is often called

the vascular resistance — a parameter quantifying the elasticity of the arteries. Our results

suggest that the vascular resistance is increased after stroke. Vascular resistance seems to

provide a better quantitative distinction between healthy subjects and stroke subjects than

that from the mean of signals. As shown in Fig. 4.3, we find that during tilt, the ratios of

most healthy subjects are below the ratio = 2 line, while most the stroke patients ratios

are above the ratio = 2 line. These results suggest that stroke is associated with increased

cerebrovascular resistance. Similar findings are also observed in supine position, but the

variability of inter-subjects observations is also greater compared to the tilt. Vascular

resistance during hyperventilation and CO2 rebreathing is similar between groups.

Our results, in some sense, suggest that cerebral autoregulation has been impaired for

chronic stroke patients. In healthy subjects, peripheral vascular resistance is increased with

an upright position, but cerebral vascular resistance is not changed, due to autoregulation.

With impaired autoregulation after stroke, cerebral vessels react in a manner similar to the

peripheral vessels and vascular resistance is increased, which may result in reduced perfusion

during orthostatic stress.
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Figure 4.3: The ratio of the BFV and BP mean values (i.e., vascular resistance) during four

stages for all 24 subjects in our database.

Note that during tilt, this ratio for most healthy subjects is below two (solid horizontal

line), while most stroke patients exhibit a ratio above two. Similar increase in the vascular

resistance is also observed in supine position.

4.6 Correlation between cerebral blood flow and peripheral

blood pressure

Instantaneous phase synchronization technique

Our Synchronization algorithm is based on the Hilbert Transform. The Hilbert Transform

of any signal f(x) is defined as the following:

F (y) =
1

π
(Cauchy Principal Value)

∫

∞

−∞

f(x)

x − y
dx. (4.1)

F (y) has an apparent physical meaning in Fourier space: for any positive (negative) fre-

quency ω, the Fourier component of F (y) at ω is that of f(x) at ω after a 90◦ clockwise

(anti-clockwise) rotation in the complex number plane. For example, if the original signal

is sinαx (α > 0), its Hilbert Transform will become cosαy.

Similar to the way we construct complex numbers, for any time series s(t) we can always
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Figure 4.4: Instantaneous Hilbert amplitude (left) and Hilbert phase (right) of a filtered

BFV signal from the left brain hemisphere (the filter is described in section 4.6) for a healthy

subject, during four experimental stages.

The Hilbert phase exhibits complex fluctuations along strong linear trends. Simultaneous

increase or decrease of the phase of the BFV and BP signals is an indication of synchro-

nization behavior (see Fig. 4.4).

construct its “analytic signal” [103–107], which is defined as

s(t) + is̃(t) = A(t)eiφ(t), (4.2)

where s̃(t) is the Hilbert Transform of s(t). A(t) and φ(t) are the Hilbert amplitude and

phase of s(t), respectively. Both the Hilbert amplitude and phase provide instantaneous

attributes of a time series s(t).

For a pure sinusoid, the Hilbert amplitude is constant and the Hilbert phase is a straight

line over time. For more complex signals, both the Hilbert amplitude and phase may display

complicated forms. As shown in Fig. 4.4, the Hilbert amplitude of the left BFV for a healthy
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subject has a similar periodic behavior to that of the original signal, in all four experimental

stages. The Hilbert phase of the left BFV of that subject during all four experimental stages

can be looked upon as the superposition of a linear trend and additional fluctuations: the

linear trend is trivial since it is caused by a periodic heart rate at a frequency of around 1

Hz; fluctuations are more important for us since they contain other useful information.

In practice, some filtering techniques are often needed before we calculate the Hilbert

Transform of a time series. Actually, the value of analytic signals in Eqn. (4.2) can depend on

the mean of s(t), i.e., s(t) and s(t)+a (a is a constant) may have different Hilbert amplitude

and phase, though both original signals have almost identical statistical properties. A

simple way that may eliminate this effect is to subtract the mean of a time series before we

calculate the Hilbert amplitude and phase. Due to similar reasons, the application of our

algorithm on nonstationary signals is also limited, since the mean of a nonstationary signal

is changing over time. To analyze a nonstationary signal, we often need to apply a Fourier

high frequency pass filter first to remove the effect of the mean and slow drift of local mean

in the signal before we calculate the Hilbert amplitude and phase.

Procedure

Our synchronization technique includes the following steps:

• First, we filter out low frequency trends in signals (high f pass filter f > 0.05 Hz is

applied) and then normalize signals (let the standard deviation of signals σ = 1);

• Next, we calculate the Hilbert amplitude and phase of filtered signals;

• Last, we calculate the cross-correlation between the BFV and BP signals for both

Hilbert amplitude and phase. Note that cross-correlation method will fail if original

signals contain linear trends (trends will contribute to the results, but we are not

interested in the effect of trends). To eliminate the linear trend in the Hilbert phase

(see Fig. 4.4), we instead calculate the cross-correlation of the Hilbert phase increment

of the BFV and BP signals.
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Figure 4.5: Cross-correlation function of the Hilbert phase increment for the BFV and BP

signals during four experimental stages.

We find that all 24 subjects separate into two categories which exhibit two very distinct

types of behavior. Type I (Left): low-amplitude cross-correlations which decay at lags

≈ 5sec., during all four stages. Most healthy subjects (eight out of eleven) belong to

this type. Type II (Right): high-amplitude cross-correlations for lags up to 20 seconds,

suggesting strong synchronization. Most stroke patients (eleven out of thirteen) belong to

this type. We find that the stage where the best distinction from Type I correlations is

given varies for different subjects.
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Results

The technique described in Section 4.6 has been applied to all 13 stroke patients and 11

healthy subjects. We find that, for the cross-correlation of both the Hilbert amplitude and

the phase increment of BFV and BP signals, stroke patients display different behavior from

that of healthy subjects. Furthermore, cross-correlation of the Hilbert phase increment

often gives better results. In general, the cross-correlation results have the following two

types:

• Type I: As shown in the left figure of Fig. 4.5, the BFV and BP signals have shorter

correlation (less than 10 seconds). Most healthy subjects (eight out of eleven) and a

few stroke patients (two out of thirteen) belong to this type. The stroke patients who

belong to this type are both female;

• Type II: As shown in the right figure of Fig. 4.5, the BFV and BP signals have much

longer sustained correlation (larger than 10 seconds). Most stroke patients (eleven out

of thirteen) and a few healthy subjects (three out of eleven) belong to this type. The

stage where the best distinction from Type I correlation is given varies for different

subjects.

The short Type I correlations (less than 10 seconds) can usually be attributed to the effect of

heart rate and/or respiration — i.e., it reflects the effect of other body regulations (similar to

a kind of “background noise”) on both BFV and BP signals and is beyond our interest. The

longer Type II correlation, however, cannot be attributed to the effect of other regulations,

instead, it may really reflect the functions of vascular tone. In other words, it may describe

the true correlations between the BFV signals in MCA and peripheral BP signals. Therefore,

the existence of such Type II correlations may indicate impaired cerebral autoregulation for

those subjects.
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4.7 Discussion

In our study we investigate blood flow velocity (BFV) signals measured from the right and

left middle cerebral arteries (MCA) and peripheral blood pressure signals, from 11 healthy

subjects and 13 subjects with documented minor stroke. We compare the properties of BFV

and BP signals as well as synchronizations between BFV and BP signals for both groups.

Based on our special experimental protocol, we evaluate the effect of minor chronic stroke

on cerebral autoregulation and the effect of orthostatic stress on the relations between BFV

and BP signals in the healthy subject and the stroke patient.

In time domain, we find that the standard deviation of BFV and BP signals during

different stages is similar for healthy subjects and stroke patients. However, we find that

healthy subjects and stroke patients have different responses to orthostatic stress, reflected

by the mean BFV and BP values, as well as by the vascular resistance ( mean BP/mean

BFV ratio). We find that cerebral vascular resistance is increased in subjects with stroke,

which suggests impaired autoregulation.

We also apply the synchronization method (based on the Hilbert transform) to quantify

the possible phase relations between the BFV and BP signals. We find that the cross-

correlations between the Hilbert phase increment of the BFV and BP signals provide reliable

quantitative indices that clearly distinguish stroke patients from healthy subjects, even

when the stroke is minor — a condition which is typically difficult to diagnose. These

indices for stroke patients show a strong and sustained correlation between BFV and BP

signals, which cannot be explained by heart rate and/or respiration. Such synchronization

pattern is not apparent in healthy subjects and suggests impaired cerebral autoregulation

for chronic stroke patients.

Using time domain analysis and the synchronization method, we are able to determine

indices that can separate stroke patients from healthy subjects. These findings are clini-

cally relevant and can be used to identify patients with impaired autoregulation who might

be at risk of cerebral perfusion. They can be also used to distinguish patients with tran-
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sient ischemic attacks who have reversible flow abnormalities from patients with permanent

damage caused by the stroke.

Part IV

References
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